Collatz猜想的证明

Q4 Mathematics
Chengning Liu
{"title":"Collatz猜想的证明","authors":"Chengning Liu","doi":"10.37622/adsa/16.1.2021.313-316","DOIUrl":null,"url":null,"abstract":"This paper used the mathematical induction to prove Collatz Conjecture, namely, assumed that the conjecture of 3, 5, 7, until 2m+1 were established, and the Collatz Conjecture transformation rule was used to prove that the conjecture was true whether m in 2m+3 was odd or even, which thoroughly proved Collatz Conjecture.","PeriodicalId":36469,"journal":{"name":"Advances in Dynamical Systems and Applications","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of Collatz Conjecture\",\"authors\":\"Chengning Liu\",\"doi\":\"10.37622/adsa/16.1.2021.313-316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper used the mathematical induction to prove Collatz Conjecture, namely, assumed that the conjecture of 3, 5, 7, until 2m+1 were established, and the Collatz Conjecture transformation rule was used to prove that the conjecture was true whether m in 2m+3 was odd or even, which thoroughly proved Collatz Conjecture.\",\"PeriodicalId\":36469,\"journal\":{\"name\":\"Advances in Dynamical Systems and Applications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Dynamical Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37622/adsa/16.1.2021.313-316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dynamical Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/adsa/16.1.2021.313-316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文利用数学归纳法证明Collatz猜想,即假设3、5、7的猜想,直到2m+1成立,并利用Collatz猜想变换规则证明2m+3中的m无论奇数还是偶数都为真,彻底证明了Collatz猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of Collatz Conjecture
This paper used the mathematical induction to prove Collatz Conjecture, namely, assumed that the conjecture of 3, 5, 7, until 2m+1 were established, and the Collatz Conjecture transformation rule was used to prove that the conjecture was true whether m in 2m+3 was odd or even, which thoroughly proved Collatz Conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信