非线性抛物型多分量扩散反应问题的数值解

IF 0.8 4区 数学 Q2 MATHEMATICS
G. Juncu, C. Popa, Gheorghe Sarbu
{"title":"非线性抛物型多分量扩散反应问题的数值解","authors":"G. Juncu, C. Popa, Gheorghe Sarbu","doi":"10.2478/auom-2021-0040","DOIUrl":null,"url":null,"abstract":"Abstract This work continues our previous analysis concerning the numerical solution of the multi-component mass transfer equations. The present test problems are two-dimensional, parabolic, non-linear, diffusion- reaction equations. An implicit finite difference method was used to discretize the mathematical model equations. The algorithm used to solve the non-linear system resulted for each time step is the modified Picard iteration. The numerical performances of the preconditioned conjugate gradient algorithms (BICGSTAB and GMRES) in solving the linear systems of the modified Picard iteration were analysed in detail. The numerical results obtained show good numerical performances.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"57 1","pages":"183 - 200"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On numerical solution of nonlinear parabolic multicomponent diffusion-reaction problems\",\"authors\":\"G. Juncu, C. Popa, Gheorghe Sarbu\",\"doi\":\"10.2478/auom-2021-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work continues our previous analysis concerning the numerical solution of the multi-component mass transfer equations. The present test problems are two-dimensional, parabolic, non-linear, diffusion- reaction equations. An implicit finite difference method was used to discretize the mathematical model equations. The algorithm used to solve the non-linear system resulted for each time step is the modified Picard iteration. The numerical performances of the preconditioned conjugate gradient algorithms (BICGSTAB and GMRES) in solving the linear systems of the modified Picard iteration were analysed in detail. The numerical results obtained show good numerical performances.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"57 1\",\"pages\":\"183 - 200\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文继续了前人关于多组分传质方程数值解的分析。目前的测试问题是二维的,抛物的,非线性的,扩散-反应方程。采用隐式有限差分法对数学模型方程进行离散化。求解每个时间步长产生的非线性系统的算法是改进的皮卡德迭代。详细分析了预条件共轭梯度算法(BICGSTAB和GMRES)在求解修正Picard迭代线性系统中的数值性能。所得数值结果显示了良好的数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On numerical solution of nonlinear parabolic multicomponent diffusion-reaction problems
Abstract This work continues our previous analysis concerning the numerical solution of the multi-component mass transfer equations. The present test problems are two-dimensional, parabolic, non-linear, diffusion- reaction equations. An implicit finite difference method was used to discretize the mathematical model equations. The algorithm used to solve the non-linear system resulted for each time step is the modified Picard iteration. The numerical performances of the preconditioned conjugate gradient algorithms (BICGSTAB and GMRES) in solving the linear systems of the modified Picard iteration were analysed in detail. The numerical results obtained show good numerical performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信