{"title":"基于位置的服务的常规行为度量","authors":"Aki Hayashi, T. Matsubayashi, H. Sawada","doi":"10.1145/2615569.2615657","DOIUrl":null,"url":null,"abstract":"We introduce a method that can measure the degree of regularity or irregularity of the behavior for enhancing the performance of location-based services (LBSs) such as check-in. It is still challenging for LBSs to determine the places to recommend that best suits the user's needs. Our aim is to identify the user's status (regular or irregular) of each check-in. Most previous studies approached this problem by acquiring usual locations (e.g., home or office) or assessing check-in frequency. We propose more effective measure by using a multinomial-distribution-based method that considers the periodic check-ins of the user on various time-scales. Our method can accurately identify irregular check-ins even in usual locations and we find that the users tend to continue irregular check-ins in a certain range of time.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"105 1","pages":"299-300"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regular behavior measure for location based services\",\"authors\":\"Aki Hayashi, T. Matsubayashi, H. Sawada\",\"doi\":\"10.1145/2615569.2615657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a method that can measure the degree of regularity or irregularity of the behavior for enhancing the performance of location-based services (LBSs) such as check-in. It is still challenging for LBSs to determine the places to recommend that best suits the user's needs. Our aim is to identify the user's status (regular or irregular) of each check-in. Most previous studies approached this problem by acquiring usual locations (e.g., home or office) or assessing check-in frequency. We propose more effective measure by using a multinomial-distribution-based method that considers the periodic check-ins of the user on various time-scales. Our method can accurately identify irregular check-ins even in usual locations and we find that the users tend to continue irregular check-ins in a certain range of time.\",\"PeriodicalId\":93136,\"journal\":{\"name\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"volume\":\"105 1\",\"pages\":\"299-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2615569.2615657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2615569.2615657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regular behavior measure for location based services
We introduce a method that can measure the degree of regularity or irregularity of the behavior for enhancing the performance of location-based services (LBSs) such as check-in. It is still challenging for LBSs to determine the places to recommend that best suits the user's needs. Our aim is to identify the user's status (regular or irregular) of each check-in. Most previous studies approached this problem by acquiring usual locations (e.g., home or office) or assessing check-in frequency. We propose more effective measure by using a multinomial-distribution-based method that considers the periodic check-ins of the user on various time-scales. Our method can accurately identify irregular check-ins even in usual locations and we find that the users tend to continue irregular check-ins in a certain range of time.