ZnSnxGe1-xN2作为硅异质结太阳能电池的电子选择触点

Davi Fébba, Vincent Paratte, L. Antognini, Julie Dréon, Julien Hurni, J. Thomet, C. Ballif, M. Boccard
{"title":"ZnSnxGe1-xN2作为硅异质结太阳能电池的电子选择触点","authors":"Davi Fébba, Vincent Paratte, L. Antognini, Julie Dréon, Julien Hurni, J. Thomet, C. Ballif, M. Boccard","doi":"10.1109/PVSC43889.2021.9518644","DOIUrl":null,"url":null,"abstract":"This work reports the electrical characterization of ZnSnxGe1-xN2 (ZTGN) layers deposited on glass by sputtering and further assesses for the first time the performance of SHJ solar cells featuring them as electron-selective contacts. Bandgap, conductivity, and activation energy were found to significantly change between Sn and Ge-rich samples, but poor performance was observed when ZTGN layers were employed as electron-selective contacts for SHJ solar cells, with similar results despite changes in material properties. A non-moving Fermi level around mid-gap silicon, strong limitation due to series resistance, and poor conductivity of Ge-rich samples can account for the observed behavior. Doping of Ge-rich ZTGN appears thus necessary to build efficient devices with a ZTGN contact layer. Using an ex-situ phosphine palsma followed by annealing did not prove successful to this regard, making in-situ doping probably necessary.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"36 1","pages":"0854-0857"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZnSnxGe1-xN2 as electron-selective contact for silicon heterojunction solar cells\",\"authors\":\"Davi Fébba, Vincent Paratte, L. Antognini, Julie Dréon, Julien Hurni, J. Thomet, C. Ballif, M. Boccard\",\"doi\":\"10.1109/PVSC43889.2021.9518644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports the electrical characterization of ZnSnxGe1-xN2 (ZTGN) layers deposited on glass by sputtering and further assesses for the first time the performance of SHJ solar cells featuring them as electron-selective contacts. Bandgap, conductivity, and activation energy were found to significantly change between Sn and Ge-rich samples, but poor performance was observed when ZTGN layers were employed as electron-selective contacts for SHJ solar cells, with similar results despite changes in material properties. A non-moving Fermi level around mid-gap silicon, strong limitation due to series resistance, and poor conductivity of Ge-rich samples can account for the observed behavior. Doping of Ge-rich ZTGN appears thus necessary to build efficient devices with a ZTGN contact layer. Using an ex-situ phosphine palsma followed by annealing did not prove successful to this regard, making in-situ doping probably necessary.\",\"PeriodicalId\":6788,\"journal\":{\"name\":\"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"36 1\",\"pages\":\"0854-0857\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC43889.2021.9518644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了通过溅射沉积在玻璃上的ZnSnxGe1-xN2 (ZTGN)层的电学特性,并首次进一步评估了将其作为电子选择触点的SHJ太阳能电池的性能。发现富锡和富锗样品的带隙、电导率和活化能发生了显著变化,但当ZTGN层作为SHJ太阳能电池的电子选择触点时,表现不佳,尽管材料性质发生了变化,但结果相似。中间间隙硅周围的非移动费米能级、串联电阻的强限制以及富锗样品的低导电性可以解释观察到的行为。因此,掺杂富锗的ZTGN对于构建具有ZTGN接触层的高效器件是必要的。在这方面,使用非原位磷化氢palsma然后退火并没有证明是成功的,因此可能需要原位掺杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZnSnxGe1-xN2 as electron-selective contact for silicon heterojunction solar cells
This work reports the electrical characterization of ZnSnxGe1-xN2 (ZTGN) layers deposited on glass by sputtering and further assesses for the first time the performance of SHJ solar cells featuring them as electron-selective contacts. Bandgap, conductivity, and activation energy were found to significantly change between Sn and Ge-rich samples, but poor performance was observed when ZTGN layers were employed as electron-selective contacts for SHJ solar cells, with similar results despite changes in material properties. A non-moving Fermi level around mid-gap silicon, strong limitation due to series resistance, and poor conductivity of Ge-rich samples can account for the observed behavior. Doping of Ge-rich ZTGN appears thus necessary to build efficient devices with a ZTGN contact layer. Using an ex-situ phosphine palsma followed by annealing did not prove successful to this regard, making in-situ doping probably necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信