具有幂型核的高斯Volterra过程。第一部分

IF 0.7 Q3 STATISTICS & PROBABILITY
Y. Mishura, S. Shklyar
{"title":"具有幂型核的高斯Volterra过程。第一部分","authors":"Y. Mishura, S. Shklyar","doi":"10.15559/22-vmsta205","DOIUrl":null,"url":null,"abstract":"The stochastic process of the form \\[ {X_{t}}={\\int _{0}^{t}}{s^{\\alpha }}\\left({\\int _{s}^{t}}{u^{\\beta }}{(u-s)^{\\gamma }}\\hspace{0.1667em}du\\right)\\hspace{0.1667em}d{W_{s}}\\] is considered, where W is a standard Wiener process, $\\alpha >-\\frac{1}{2}$, $\\gamma >-1$, and $\\alpha +\\beta +\\gamma >-\\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\\alpha +\\beta +\\gamma +\\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\\min \\big(\\gamma +\\frac{3}{2},\\hspace{0.2222em}1\\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\\min \\big(\\alpha +\\beta +\\gamma +\\frac{3}{2},\\hspace{0.2778em}\\gamma +\\frac{3}{2},\\hspace{0.2778em}1\\big)$ on the entire interval $[0,T]$.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"20 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gaussian Volterra processes with power-type kernels. Part I\",\"authors\":\"Y. Mishura, S. Shklyar\",\"doi\":\"10.15559/22-vmsta205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stochastic process of the form \\\\[ {X_{t}}={\\\\int _{0}^{t}}{s^{\\\\alpha }}\\\\left({\\\\int _{s}^{t}}{u^{\\\\beta }}{(u-s)^{\\\\gamma }}\\\\hspace{0.1667em}du\\\\right)\\\\hspace{0.1667em}d{W_{s}}\\\\] is considered, where W is a standard Wiener process, $\\\\alpha >-\\\\frac{1}{2}$, $\\\\gamma >-1$, and $\\\\alpha +\\\\beta +\\\\gamma >-\\\\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\\\\alpha +\\\\beta +\\\\gamma +\\\\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\\\\min \\\\big(\\\\gamma +\\\\frac{3}{2},\\\\hspace{0.2222em}1\\\\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\\\\min \\\\big(\\\\alpha +\\\\beta +\\\\gamma +\\\\frac{3}{2},\\\\hspace{0.2778em}\\\\gamma +\\\\frac{3}{2},\\\\hspace{0.2778em}1\\\\big)$ on the entire interval $[0,T]$.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/22-vmsta205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/22-vmsta205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

形式的随机过程 \[ {X_{t}}={\int _{0}^{t}}{s^{\alpha }}\left({\int _{s}^{t}}{u^{\beta }}{(u-s)^{\gamma }}\hspace{0.1667em}du\right)\hspace{0.1667em}d{W_{s}}\] ,其中W是标准维纳过程, $\alpha >-\frac{1}{2}$, $\gamma >-1$,和 $\alpha +\beta +\gamma >-\frac{3}{2}$. 证明了过程X是定义良好的连续过程。研究了过程X的增量的方差和界的渐近性质。并证明了过程X满足单点Hölder条件 $\alpha +\beta +\gamma +\frac{3}{2}$ 在点0处,“间隔”Hölder条件达到顺序 $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ 在间隔上 $[{t_{0}},T]$ (哪里 $0<{t_{0}}本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Gaussian Volterra processes with power-type kernels. Part I
The stochastic process of the form \[ {X_{t}}={\int _{0}^{t}}{s^{\alpha }}\left({\int _{s}^{t}}{u^{\beta }}{(u-s)^{\gamma }}\hspace{0.1667em}du\right)\hspace{0.1667em}d{W_{s}}\] is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信