{"title":"高阶概率泛函规划的协归纳等价","authors":"Ugo Dal Lago, D. Sangiorgi, Michele Alberti","doi":"10.1145/2535838.2535872","DOIUrl":null,"url":null,"abstract":"We study bisimulation and context equivalence in a probabilistic lambda-calculus. The contributions of this paper are threefold. Firstly we show a technique for proving congruence of probabilistic applicative bisimilarity. While the technique follows Howe's method, some of the technicalities are quite different, relying on non-trivial \"disentangling\" properties for sets of real numbers. Secondly we show that, while bisimilarity is in general strictly finer than context equivalence, coincidence between the two relations is attained on pure lambda-terms. The resulting equality is that induced by Levy-Longo trees, generally accepted as the finest extensional equivalence on pure lambda-terms under a lazy regime. Finally, we derive a coinductive characterisation of context equivalence on the whole probabilistic language, via an extension in which terms akin to distributions may appear in redex position. Another motivation for the extension is that its operational semantics allows us to experiment with a different congruence technique, namely that of logical bisimilarity.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"On coinductive equivalences for higher-order probabilistic functional programs\",\"authors\":\"Ugo Dal Lago, D. Sangiorgi, Michele Alberti\",\"doi\":\"10.1145/2535838.2535872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study bisimulation and context equivalence in a probabilistic lambda-calculus. The contributions of this paper are threefold. Firstly we show a technique for proving congruence of probabilistic applicative bisimilarity. While the technique follows Howe's method, some of the technicalities are quite different, relying on non-trivial \\\"disentangling\\\" properties for sets of real numbers. Secondly we show that, while bisimilarity is in general strictly finer than context equivalence, coincidence between the two relations is attained on pure lambda-terms. The resulting equality is that induced by Levy-Longo trees, generally accepted as the finest extensional equivalence on pure lambda-terms under a lazy regime. Finally, we derive a coinductive characterisation of context equivalence on the whole probabilistic language, via an extension in which terms akin to distributions may appear in redex position. Another motivation for the extension is that its operational semantics allows us to experiment with a different congruence technique, namely that of logical bisimilarity.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535838.2535872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On coinductive equivalences for higher-order probabilistic functional programs
We study bisimulation and context equivalence in a probabilistic lambda-calculus. The contributions of this paper are threefold. Firstly we show a technique for proving congruence of probabilistic applicative bisimilarity. While the technique follows Howe's method, some of the technicalities are quite different, relying on non-trivial "disentangling" properties for sets of real numbers. Secondly we show that, while bisimilarity is in general strictly finer than context equivalence, coincidence between the two relations is attained on pure lambda-terms. The resulting equality is that induced by Levy-Longo trees, generally accepted as the finest extensional equivalence on pure lambda-terms under a lazy regime. Finally, we derive a coinductive characterisation of context equivalence on the whole probabilistic language, via an extension in which terms akin to distributions may appear in redex position. Another motivation for the extension is that its operational semantics allows us to experiment with a different congruence technique, namely that of logical bisimilarity.