一些二元相关Beta分布和Kumaraswamy分布的信度综述

Q3 Mathematics
I. Ghosh
{"title":"一些二元相关Beta分布和Kumaraswamy分布的信度综述","authors":"I. Ghosh","doi":"10.1515/eqc-2018-0029","DOIUrl":null,"url":null,"abstract":"Abstract In the area of stress-strength models, there has been a large amount of work regarding the estimation of the reliability R = Pr ⁡ ( X < Y ) {R=\\Pr(X<Y)} . The algebraic form for R = Pr ⁡ ( X < Y ) {R=\\Pr(X<Y)} has been worked out for the vast majority of the well-known distributions when X and Y are independent random variables belonging to the same univariate family. In this paper, forms of R are considered when ( X , Y ) {(X,Y)} follow bivariate distributions with dependence between X and Y. In particular, explicit expressions for R are derived when the joint distribution are dependent bivariate beta and bivariate Kumaraswamy. The calculations involve the use of special functions.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"11 1","pages":"115 - 121"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey\",\"authors\":\"I. Ghosh\",\"doi\":\"10.1515/eqc-2018-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the area of stress-strength models, there has been a large amount of work regarding the estimation of the reliability R = Pr ⁡ ( X < Y ) {R=\\\\Pr(X<Y)} . The algebraic form for R = Pr ⁡ ( X < Y ) {R=\\\\Pr(X<Y)} has been worked out for the vast majority of the well-known distributions when X and Y are independent random variables belonging to the same univariate family. In this paper, forms of R are considered when ( X , Y ) {(X,Y)} follow bivariate distributions with dependence between X and Y. In particular, explicit expressions for R are derived when the joint distribution are dependent bivariate beta and bivariate Kumaraswamy. The calculations involve the use of special functions.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"11 1\",\"pages\":\"115 - 121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2018-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2018-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

摘要在应力-强度模型领域,关于可靠性R= Pr(X本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey
Abstract In the area of stress-strength models, there has been a large amount of work regarding the estimation of the reliability R = Pr ⁡ ( X < Y ) {R=\Pr(X
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信