人口稠密环境下的视觉SLAM: YOLO与Mask R-CNN准确率与速度的权衡

J. C. V. Soares, M. Gattass, M. Meggiolaro
{"title":"人口稠密环境下的视觉SLAM: YOLO与Mask R-CNN准确率与速度的权衡","authors":"J. C. V. Soares, M. Gattass, M. Meggiolaro","doi":"10.1109/ICAR46387.2019.8981617","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mobile robotics. However, the majority of Visual SLAM algorithms assume a static scenario, limiting their applicability in real-world environments. Dealing with dynamic content in Visual SLAM is still an open problem, with solutions usually relying on direct or feature-based methods. Deep learning techniques can improve the SLAM solution in environments with a priori dynamic objects, providing high-level information of the scene. This paper presents a new approach to SLAM in human populated environments using deep learning-based techniques. The system is built on ORB-SLAM2, a state-of-the-art SLAM system. The proposed methodology is evaluated using a benchmark dataset, outperforming other Visual SLAM methods in highly dynamic scenarios.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"8 1","pages":"135-140"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Visual SLAM in Human Populated Environments: Exploring the Trade-off between Accuracy and Speed of YOLO and Mask R-CNN\",\"authors\":\"J. C. V. Soares, M. Gattass, M. Meggiolaro\",\"doi\":\"10.1109/ICAR46387.2019.8981617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mobile robotics. However, the majority of Visual SLAM algorithms assume a static scenario, limiting their applicability in real-world environments. Dealing with dynamic content in Visual SLAM is still an open problem, with solutions usually relying on direct or feature-based methods. Deep learning techniques can improve the SLAM solution in environments with a priori dynamic objects, providing high-level information of the scene. This paper presents a new approach to SLAM in human populated environments using deep learning-based techniques. The system is built on ORB-SLAM2, a state-of-the-art SLAM system. The proposed methodology is evaluated using a benchmark dataset, outperforming other Visual SLAM methods in highly dynamic scenarios.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"8 1\",\"pages\":\"135-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

同时定位与映射(SLAM)是移动机器人中的一个基本问题。然而,大多数Visual SLAM算法假设一个静态场景,限制了它们在现实环境中的适用性。在Visual SLAM中处理动态内容仍然是一个开放的问题,解决方案通常依赖于直接或基于特征的方法。深度学习技术可以在具有先验动态对象的环境中改进SLAM解决方案,提供场景的高级信息。本文提出了一种利用基于深度学习的技术在人口密集环境中实现SLAM的新方法。该系统建立在ORB-SLAM2上,这是一种最先进的SLAM系统。所提出的方法使用基准数据集进行评估,在高动态场景中优于其他Visual SLAM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual SLAM in Human Populated Environments: Exploring the Trade-off between Accuracy and Speed of YOLO and Mask R-CNN
Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mobile robotics. However, the majority of Visual SLAM algorithms assume a static scenario, limiting their applicability in real-world environments. Dealing with dynamic content in Visual SLAM is still an open problem, with solutions usually relying on direct or feature-based methods. Deep learning techniques can improve the SLAM solution in environments with a priori dynamic objects, providing high-level information of the scene. This paper presents a new approach to SLAM in human populated environments using deep learning-based techniques. The system is built on ORB-SLAM2, a state-of-the-art SLAM system. The proposed methodology is evaluated using a benchmark dataset, outperforming other Visual SLAM methods in highly dynamic scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信