{"title":"图像搜索的局部保持验证","authors":"Shanmin Pang, Jianru Xue, Nanning Zheng, Q. Tian","doi":"10.1145/2502081.2502140","DOIUrl":null,"url":null,"abstract":"Establishing correct correspondences between two images has a wide range of applications, such as 2D and 3D registration, structure from motion, and image retrieval. In this paper, we propose a new matching method based on spatial constraints. The proposed method has linear time complexity, and is efficient when applying it to image retrieval. The main assumption behind our method is that, the local geometric structure among a feature point and its neighbors, is not easily affected by both geometric and photometric transformations, and thus should be preserved in their corresponding images. We model this local geometric structure by linear coefficients that reconstruct the point from its neighbors. The method is flexible, as it can not only estimate the number of correct matches between two images efficiently, but also determine the correctness of each match accurately. Furthermore, it is simple and easy to be implemented. When applying the proposed method on re-ranking images in an image search engine, it outperforms the-state-of-the-art techniques.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Locality preserving verification for image search\",\"authors\":\"Shanmin Pang, Jianru Xue, Nanning Zheng, Q. Tian\",\"doi\":\"10.1145/2502081.2502140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing correct correspondences between two images has a wide range of applications, such as 2D and 3D registration, structure from motion, and image retrieval. In this paper, we propose a new matching method based on spatial constraints. The proposed method has linear time complexity, and is efficient when applying it to image retrieval. The main assumption behind our method is that, the local geometric structure among a feature point and its neighbors, is not easily affected by both geometric and photometric transformations, and thus should be preserved in their corresponding images. We model this local geometric structure by linear coefficients that reconstruct the point from its neighbors. The method is flexible, as it can not only estimate the number of correct matches between two images efficiently, but also determine the correctness of each match accurately. Furthermore, it is simple and easy to be implemented. When applying the proposed method on re-ranking images in an image search engine, it outperforms the-state-of-the-art techniques.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Establishing correct correspondences between two images has a wide range of applications, such as 2D and 3D registration, structure from motion, and image retrieval. In this paper, we propose a new matching method based on spatial constraints. The proposed method has linear time complexity, and is efficient when applying it to image retrieval. The main assumption behind our method is that, the local geometric structure among a feature point and its neighbors, is not easily affected by both geometric and photometric transformations, and thus should be preserved in their corresponding images. We model this local geometric structure by linear coefficients that reconstruct the point from its neighbors. The method is flexible, as it can not only estimate the number of correct matches between two images efficiently, but also determine the correctness of each match accurately. Furthermore, it is simple and easy to be implemented. When applying the proposed method on re-ranking images in an image search engine, it outperforms the-state-of-the-art techniques.