微波频率下生物组织介电特性估计的天线标定方法

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy
David C. Garrett, J. Bourqui, E. Fear
{"title":"微波频率下生物组织介电特性估计的天线标定方法","authors":"David C. Garrett, J. Bourqui, E. Fear","doi":"10.2528/PIER16122204","DOIUrl":null,"url":null,"abstract":"We aim to estimate the average dielectric properties of centimeter-scale volumes of biological tissues. A variety of approaches to measurement of dielectric properties of materials at microwave frequencies have been demonstrated in the literature and in practice. However, existing methods are not suitable for noninvasive measurement of in vivo biological tissues due to high property contrast with air, and the need to conform with the shape of the human body. To overcome this, a method of antenna calibration has been adapted and developed for use with an antenna system designed for biomedical applications, allowing for the estimation of permittivity and conductivity. This technique requires only two calibration procedures and does not require any special manufactured components. Simulated and measured results are presented between 3 to 8 GHz for materials with properties expected in biological tissues. Error bounds and an analysis of sources of error are provided.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"57 1","pages":"73-87"},"PeriodicalIF":6.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Antenna Calibration Method for Dielectric Property Estimation of Biological Tissues at Microwave Frequencies\",\"authors\":\"David C. Garrett, J. Bourqui, E. Fear\",\"doi\":\"10.2528/PIER16122204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to estimate the average dielectric properties of centimeter-scale volumes of biological tissues. A variety of approaches to measurement of dielectric properties of materials at microwave frequencies have been demonstrated in the literature and in practice. However, existing methods are not suitable for noninvasive measurement of in vivo biological tissues due to high property contrast with air, and the need to conform with the shape of the human body. To overcome this, a method of antenna calibration has been adapted and developed for use with an antenna system designed for biomedical applications, allowing for the estimation of permittivity and conductivity. This technique requires only two calibration procedures and does not require any special manufactured components. Simulated and measured results are presented between 3 to 8 GHz for materials with properties expected in biological tissues. Error bounds and an analysis of sources of error are provided.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"57 1\",\"pages\":\"73-87\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER16122204\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER16122204","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 7

摘要

我们的目标是估计厘米尺度生物组织体积的平均介电特性。在微波频率下测量材料介电特性的各种方法已经在文献和实践中得到了证明。然而,现有的方法由于与空气的性能对比高,并且需要符合人体的形状,因此不适合对体内生物组织进行无创测量。为了克服这一点,一种天线校准方法已经被改编和开发,用于为生物医学应用设计的天线系统,允许估计介电常数和电导率。该技术只需要两个校准程序,不需要任何特殊制造的组件。模拟和测量结果在3到8 GHz之间,材料具有生物组织中预期的性能。给出了误差范围和误差来源的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antenna Calibration Method for Dielectric Property Estimation of Biological Tissues at Microwave Frequencies
We aim to estimate the average dielectric properties of centimeter-scale volumes of biological tissues. A variety of approaches to measurement of dielectric properties of materials at microwave frequencies have been demonstrated in the literature and in practice. However, existing methods are not suitable for noninvasive measurement of in vivo biological tissues due to high property contrast with air, and the need to conform with the shape of the human body. To overcome this, a method of antenna calibration has been adapted and developed for use with an antenna system designed for biomedical applications, allowing for the estimation of permittivity and conductivity. This technique requires only two calibration procedures and does not require any special manufactured components. Simulated and measured results are presented between 3 to 8 GHz for materials with properties expected in biological tissues. Error bounds and an analysis of sources of error are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信