利用分段不相交弧盘性质及相关性质检测余维数

D. Halverson, Dušan D. Repovš
{"title":"利用分段不相交弧盘性质及相关性质检测余维数","authors":"D. Halverson, Dušan D. Repovš","doi":"10.2478/s11533-013-0291-z","DOIUrl":null,"url":null,"abstract":"We show that all finite-dimensional resolvable generalized manifolds with the piecewise disjoint arc-disk property are codimension one manifold factors. We then show how the piecewise disjoint arc-disk property and other general position properties that detect codimension one manifold factors are related. We also note that in every example presently known to the authors of a codimension one manifold factor of dimension n ≥ 4 determined by general position properties, the piecewise disjoint arc-disk property is satisfied.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"67 1","pages":"1932-1948"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting codimension one manifold factors with the piecewise disjoint arc-disk property and related properties\",\"authors\":\"D. Halverson, Dušan D. Repovš\",\"doi\":\"10.2478/s11533-013-0291-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that all finite-dimensional resolvable generalized manifolds with the piecewise disjoint arc-disk property are codimension one manifold factors. We then show how the piecewise disjoint arc-disk property and other general position properties that detect codimension one manifold factors are related. We also note that in every example presently known to the authors of a codimension one manifold factor of dimension n ≥ 4 determined by general position properties, the piecewise disjoint arc-disk property is satisfied.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"67 1\",\"pages\":\"1932-1948\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0291-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0291-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了所有具有分段不相交弧盘性质的有限维可解析广义流形都是余维一流形因子。然后,我们展示了分段不相交弧盘性质和其他检测余维一流形因素的一般位置性质是如何相互关联的。我们还注意到,在目前已知的由一般位置性质决定的n≥4维的余维1流形因子的每一个例子中,分段不相交的弧盘性质都是满足的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting codimension one manifold factors with the piecewise disjoint arc-disk property and related properties
We show that all finite-dimensional resolvable generalized manifolds with the piecewise disjoint arc-disk property are codimension one manifold factors. We then show how the piecewise disjoint arc-disk property and other general position properties that detect codimension one manifold factors are related. We also note that in every example presently known to the authors of a codimension one manifold factor of dimension n ≥ 4 determined by general position properties, the piecewise disjoint arc-disk property is satisfied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信