满足Gilbert-Varshamov或Tsfasman-Vladut-Zink边界的信道码的信源和信道速率分配

A. Méhes, K. Zeger
{"title":"满足Gilbert-Varshamov或Tsfasman-Vladut-Zink边界的信道码的信源和信道速率分配","authors":"A. Méhes, K. Zeger","doi":"10.1109/18.868483","DOIUrl":null,"url":null,"abstract":"We derive bounds for optimal rate allocation between source and channel coding for linear channel codes that meet the Gilbert-Varshamov or Tsfasman-Vladut-Zink (1984) bounds. Formulas giving the high resolution vector quantizer distortion of these systems are also derived. In addition, we give bounds on how far below the channel capacity the transmission rate should be for a given delay constraint. The bounds obtained depend on the relationship between channel code rate and relative minimum distance guaranteed by the Gilbert-Varshamov bound, and do not require sophisticated decoding beyond the error correction limit. We demonstrate that the end-to-end mean-squared error decays exponentially fast as a function of the overall transmission rate, which need not be the case for certain well-known structured codes such as Hamming codes.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"20 1","pages":"2133-2151"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Source and channel rate allocation for channel codes satisfying the Gilbert-Varshamov or Tsfasman-Vladut-Zink bounds\",\"authors\":\"A. Méhes, K. Zeger\",\"doi\":\"10.1109/18.868483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive bounds for optimal rate allocation between source and channel coding for linear channel codes that meet the Gilbert-Varshamov or Tsfasman-Vladut-Zink (1984) bounds. Formulas giving the high resolution vector quantizer distortion of these systems are also derived. In addition, we give bounds on how far below the channel capacity the transmission rate should be for a given delay constraint. The bounds obtained depend on the relationship between channel code rate and relative minimum distance guaranteed by the Gilbert-Varshamov bound, and do not require sophisticated decoding beyond the error correction limit. We demonstrate that the end-to-end mean-squared error decays exponentially fast as a function of the overall transmission rate, which need not be the case for certain well-known structured codes such as Hamming codes.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"20 1\",\"pages\":\"2133-2151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.868483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.868483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们推导了满足Gilbert-Varshamov或Tsfasman-Vladut-Zink(1984)边界的线性信道编码的源和信道编码之间的最佳速率分配界限。给出了这些系统的高分辨率矢量量化失真的计算公式。此外,我们给出了在给定延迟约束下传输速率应低于信道容量多远的界限。所得到的界依赖于信道码率与Gilbert-Varshamov界所保证的相对最小距离之间的关系,并且不需要超出纠错限制的复杂解码。我们证明端到端均方误差作为整体传输速率的函数呈指数级快速衰减,而对于某些众所周知的结构化代码(如汉明码)则不必如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Source and channel rate allocation for channel codes satisfying the Gilbert-Varshamov or Tsfasman-Vladut-Zink bounds
We derive bounds for optimal rate allocation between source and channel coding for linear channel codes that meet the Gilbert-Varshamov or Tsfasman-Vladut-Zink (1984) bounds. Formulas giving the high resolution vector quantizer distortion of these systems are also derived. In addition, we give bounds on how far below the channel capacity the transmission rate should be for a given delay constraint. The bounds obtained depend on the relationship between channel code rate and relative minimum distance guaranteed by the Gilbert-Varshamov bound, and do not require sophisticated decoding beyond the error correction limit. We demonstrate that the end-to-end mean-squared error decays exponentially fast as a function of the overall transmission rate, which need not be the case for certain well-known structured codes such as Hamming codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信