泊松结构空间上的泊松支架

IF 0.6 3区 数学 Q3 MATHEMATICS
Thomas Machon
{"title":"泊松结构空间上的泊松支架","authors":"Thomas Machon","doi":"10.4310/JSG.2022.v20.n5.a4","DOIUrl":null,"url":null,"abstract":"Let $M$ be a smooth closed orientable manifold and $\\mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $\\mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $\\mathcal{P}(M)$ by volume-preserving diffeomorphism of $M$. We then define an invariant of a Poisson structure that describes fixed points of the flow equation and compute it for regular Poisson 3-manifolds, where it detects unimodularity. For unimodular Poisson structures we define a further, related Poisson bracket and show that for symplectic structures the associated invariant counting fixed points of the flow equation is given in terms of the $d d^\\Lambda$ and $d+ d^\\Lambda$ symplectic cohomology groups defined by Tseng and Yau.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Poisson bracket on the space of Poisson structures\",\"authors\":\"Thomas Machon\",\"doi\":\"10.4310/JSG.2022.v20.n5.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a smooth closed orientable manifold and $\\\\mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $\\\\mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $\\\\mathcal{P}(M)$ by volume-preserving diffeomorphism of $M$. We then define an invariant of a Poisson structure that describes fixed points of the flow equation and compute it for regular Poisson 3-manifolds, where it detects unimodularity. For unimodular Poisson structures we define a further, related Poisson bracket and show that for symplectic structures the associated invariant counting fixed points of the flow equation is given in terms of the $d d^\\\\Lambda$ and $d+ d^\\\\Lambda$ symplectic cohomology groups defined by Tseng and Yau.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2022.v20.n5.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2022.v20.n5.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$M$为光滑闭可定向流形,$\mathcal{P}(M)$为$M$上泊松结构的空间。我们根据选择的体积形式在$\mathcal{P}(M)$上构造一个泊松括号。括号的哈密顿流通过$M$的保体积微分同构作用于$\mathcal{P}(M)$。然后,我们定义了描述流动方程不动点的泊松结构的不变量,并计算了正则泊松3-流形的不变量,其中它检测单模性。对于非模泊松结构,我们进一步定义了一个相关的泊松括号,并证明了对于辛结构,流动方程的相关不变计数不动点是由Tseng和Yau定义的d d^\Lambda$和d+ d^\Lambda$辛上同群给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Poisson bracket on the space of Poisson structures
Let $M$ be a smooth closed orientable manifold and $\mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $\mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $\mathcal{P}(M)$ by volume-preserving diffeomorphism of $M$. We then define an invariant of a Poisson structure that describes fixed points of the flow equation and compute it for regular Poisson 3-manifolds, where it detects unimodularity. For unimodular Poisson structures we define a further, related Poisson bracket and show that for symplectic structures the associated invariant counting fixed points of the flow equation is given in terms of the $d d^\Lambda$ and $d+ d^\Lambda$ symplectic cohomology groups defined by Tseng and Yau.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信