N. H. Mohammed, N. Cho, E. A. Adegani, T. Bulboacă
{"title":"归一化虚误差函数的几何性质","authors":"N. H. Mohammed, N. Cho, E. A. Adegani, T. Bulboacă","doi":"10.24193/subbmath.2022.2.19","DOIUrl":null,"url":null,"abstract":"\"The error function takes place in a wide range in the elds of mathe- matics, mathematical physics and natural sciences. The aim of the current paper is to investigate certain properties such as univalence and close-to-convexity of normalized imaginary error function, which its region is symmetric with respect to the real axis. Some other outcomes are also obtained.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geometric properties of normalized imaginary error function\",\"authors\":\"N. H. Mohammed, N. Cho, E. A. Adegani, T. Bulboacă\",\"doi\":\"10.24193/subbmath.2022.2.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"The error function takes place in a wide range in the elds of mathe- matics, mathematical physics and natural sciences. The aim of the current paper is to investigate certain properties such as univalence and close-to-convexity of normalized imaginary error function, which its region is symmetric with respect to the real axis. Some other outcomes are also obtained.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.2.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.2.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric properties of normalized imaginary error function
"The error function takes place in a wide range in the elds of mathe- matics, mathematical physics and natural sciences. The aim of the current paper is to investigate certain properties such as univalence and close-to-convexity of normalized imaginary error function, which its region is symmetric with respect to the real axis. Some other outcomes are also obtained."