Marcus Clarin, Annika Petersson, H. Zetterberg, K. Ekblom
{"title":"脑脊髓液分光光度法检测蛛网膜下腔出血——两种方法的比较","authors":"Marcus Clarin, Annika Petersson, H. Zetterberg, K. Ekblom","doi":"10.1515/cclm-2021-1320","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Spectrophotometric absorption curve analysis of cerebrospinal fluid (CSF) for oxyhaemoglobin and bilirubin is necessary to accurately diagnose subarachnoid haemorrhage (SAH) in patients with typical symptoms but with negative findings on X-ray examinations. In this study, we evaluated the performance of two methods for interpreting absorption curves; one method from the United Kingdom National External Quality Assessment Service (UK-NEQAS) and the other from the national quality assurance programme in Sweden (Equalis). Methods Consecutive absorbance curves (n=336) were interpreted with two different methods, and their performance was compared to the diagnosis as stated in the patient records. Results The UK-NEQAS method displayed equal sensitivity to the Equalis method, but the specificity of the UK-NEQAS method was significantly higher than the Equalis method resulting in fewer false positive results. For UK-NEQAS, a positive predictive value (PPV) of 84.6% and a negative predictive value (NPV) of 99.7% were observed, whereas the Equalis method had a PPV of 27.5% and an NPV of 99.7%. Conclusions The semi-automated method based on the guidelines from UK-NEQAS provides an efficient and correct interpretation of absorbance curves with short turn-around times. We propose using this method for the routine interpretation of CSF spectrophotometric curves.","PeriodicalId":10388,"journal":{"name":"Clinical Chemistry and Laboratory Medicine (CCLM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of subarachnoid haemorrhage with spectrophotometry of cerebrospinal fluid – a comparison of two methods\",\"authors\":\"Marcus Clarin, Annika Petersson, H. Zetterberg, K. Ekblom\",\"doi\":\"10.1515/cclm-2021-1320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives Spectrophotometric absorption curve analysis of cerebrospinal fluid (CSF) for oxyhaemoglobin and bilirubin is necessary to accurately diagnose subarachnoid haemorrhage (SAH) in patients with typical symptoms but with negative findings on X-ray examinations. In this study, we evaluated the performance of two methods for interpreting absorption curves; one method from the United Kingdom National External Quality Assessment Service (UK-NEQAS) and the other from the national quality assurance programme in Sweden (Equalis). Methods Consecutive absorbance curves (n=336) were interpreted with two different methods, and their performance was compared to the diagnosis as stated in the patient records. Results The UK-NEQAS method displayed equal sensitivity to the Equalis method, but the specificity of the UK-NEQAS method was significantly higher than the Equalis method resulting in fewer false positive results. For UK-NEQAS, a positive predictive value (PPV) of 84.6% and a negative predictive value (NPV) of 99.7% were observed, whereas the Equalis method had a PPV of 27.5% and an NPV of 99.7%. Conclusions The semi-automated method based on the guidelines from UK-NEQAS provides an efficient and correct interpretation of absorbance curves with short turn-around times. We propose using this method for the routine interpretation of CSF spectrophotometric curves.\",\"PeriodicalId\":10388,\"journal\":{\"name\":\"Clinical Chemistry and Laboratory Medicine (CCLM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Chemistry and Laboratory Medicine (CCLM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2021-1320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Chemistry and Laboratory Medicine (CCLM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cclm-2021-1320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of subarachnoid haemorrhage with spectrophotometry of cerebrospinal fluid – a comparison of two methods
Abstract Objectives Spectrophotometric absorption curve analysis of cerebrospinal fluid (CSF) for oxyhaemoglobin and bilirubin is necessary to accurately diagnose subarachnoid haemorrhage (SAH) in patients with typical symptoms but with negative findings on X-ray examinations. In this study, we evaluated the performance of two methods for interpreting absorption curves; one method from the United Kingdom National External Quality Assessment Service (UK-NEQAS) and the other from the national quality assurance programme in Sweden (Equalis). Methods Consecutive absorbance curves (n=336) were interpreted with two different methods, and their performance was compared to the diagnosis as stated in the patient records. Results The UK-NEQAS method displayed equal sensitivity to the Equalis method, but the specificity of the UK-NEQAS method was significantly higher than the Equalis method resulting in fewer false positive results. For UK-NEQAS, a positive predictive value (PPV) of 84.6% and a negative predictive value (NPV) of 99.7% were observed, whereas the Equalis method had a PPV of 27.5% and an NPV of 99.7%. Conclusions The semi-automated method based on the guidelines from UK-NEQAS provides an efficient and correct interpretation of absorbance curves with short turn-around times. We propose using this method for the routine interpretation of CSF spectrophotometric curves.