线性非保守无阻尼系统的完全不稳定性

IF 0.7 Q4 MECHANICS
R. Bulatović
{"title":"线性非保守无阻尼系统的完全不稳定性","authors":"R. Bulatović","doi":"10.2298/TAM170620010B","DOIUrl":null,"url":null,"abstract":"The note is concerned with the problem of determining the completely unstable linear non-conservative undamped (circulatory) dynamical systems. Several conditions that provide the complete instability for such systems are derived using the direct method of Lyapunov and the concept of controllability. The conditions are expressed directly via the matrices describing the dynamical system.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"12 1","pages":"181-188"},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A note on the complete instability of linear non-conservative undamped systems\",\"authors\":\"R. Bulatović\",\"doi\":\"10.2298/TAM170620010B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The note is concerned with the problem of determining the completely unstable linear non-conservative undamped (circulatory) dynamical systems. Several conditions that provide the complete instability for such systems are derived using the direct method of Lyapunov and the concept of controllability. The conditions are expressed directly via the matrices describing the dynamical system.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"12 1\",\"pages\":\"181-188\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/TAM170620010B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM170620010B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了确定完全不稳定线性非保守无阻尼(循环)动力系统的问题。利用李亚普诺夫的直接方法和可控性的概念,导出了这种系统完全不稳定的几个条件。这些条件直接通过描述动力系统的矩阵表示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the complete instability of linear non-conservative undamped systems
The note is concerned with the problem of determining the completely unstable linear non-conservative undamped (circulatory) dynamical systems. Several conditions that provide the complete instability for such systems are derived using the direct method of Lyapunov and the concept of controllability. The conditions are expressed directly via the matrices describing the dynamical system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信