基于部分标记数据的深度面部动作单元识别

Shan Wu, Shangfei Wang, Bowen Pan, Q. Ji
{"title":"基于部分标记数据的深度面部动作单元识别","authors":"Shan Wu, Shangfei Wang, Bowen Pan, Q. Ji","doi":"10.1109/ICCV.2017.426","DOIUrl":null,"url":null,"abstract":"Current work on facial action unit (AU) recognition requires AU-labeled facial images. Although large amounts of facial images are readily available, AU annotation is expensive and time consuming. To address this, we propose a deep facial action unit recognition approach learning from partially AU-labeled data. The proposed approach makes full use of both partly available ground-truth AU labels and the readily available large scale facial images without annotation. Specifically, we propose to learn label distribution from the ground-truth AU labels, and then train the AU classifiers from the large-scale facial images by maximizing the log likelihood of the mapping functions of AUs with regard to the learnt label distribution for all training data and minimizing the error between predicted AUs and ground-truth AUs for labeled data simultaneously. A restricted Boltzmann machine is adopted to model AU label distribution, a deep neural network is used to learn facial representation from facial images, and the support vector machine is employed as the classifier. Experiments on two benchmark databases demonstrate the effectiveness of the proposed approach.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"19 1","pages":"3971-3979"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Deep Facial Action Unit Recognition from Partially Labeled Data\",\"authors\":\"Shan Wu, Shangfei Wang, Bowen Pan, Q. Ji\",\"doi\":\"10.1109/ICCV.2017.426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current work on facial action unit (AU) recognition requires AU-labeled facial images. Although large amounts of facial images are readily available, AU annotation is expensive and time consuming. To address this, we propose a deep facial action unit recognition approach learning from partially AU-labeled data. The proposed approach makes full use of both partly available ground-truth AU labels and the readily available large scale facial images without annotation. Specifically, we propose to learn label distribution from the ground-truth AU labels, and then train the AU classifiers from the large-scale facial images by maximizing the log likelihood of the mapping functions of AUs with regard to the learnt label distribution for all training data and minimizing the error between predicted AUs and ground-truth AUs for labeled data simultaneously. A restricted Boltzmann machine is adopted to model AU label distribution, a deep neural network is used to learn facial representation from facial images, and the support vector machine is employed as the classifier. Experiments on two benchmark databases demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"19 1\",\"pages\":\"3971-3979\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

目前的面部动作单元(AU)识别工作需要AU标记的面部图像。尽管大量的面部图像是现成的,但是AU注释是昂贵且耗时的。为了解决这个问题,我们提出了一种深度面部动作单元识别方法,该方法从部分au标记的数据中学习。该方法既充分利用了部分可用的真实AU标签,又充分利用了现成的无标注的大尺度人脸图像。具体来说,我们提出从真实AU标签中学习标签分布,然后通过最大化所有训练数据的AU映射函数相对于学习到的标签分布的对数似然,同时最小化标记数据的预测AU与真实AU之间的误差,从大规模面部图像中训练AU分类器。采用受限玻尔兹曼机对AU标签分布进行建模,采用深度神经网络从人脸图像中学习人脸表征,并采用支持向量机作为分类器。在两个基准数据库上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Facial Action Unit Recognition from Partially Labeled Data
Current work on facial action unit (AU) recognition requires AU-labeled facial images. Although large amounts of facial images are readily available, AU annotation is expensive and time consuming. To address this, we propose a deep facial action unit recognition approach learning from partially AU-labeled data. The proposed approach makes full use of both partly available ground-truth AU labels and the readily available large scale facial images without annotation. Specifically, we propose to learn label distribution from the ground-truth AU labels, and then train the AU classifiers from the large-scale facial images by maximizing the log likelihood of the mapping functions of AUs with regard to the learnt label distribution for all training data and minimizing the error between predicted AUs and ground-truth AUs for labeled data simultaneously. A restricted Boltzmann machine is adopted to model AU label distribution, a deep neural network is used to learn facial representation from facial images, and the support vector machine is employed as the classifier. Experiments on two benchmark databases demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信