微分形式代数托架相关泊松结构的变形及其在实际低维李代数中的应用

Q4 Mathematics
A. Dobrogowska, G. Jakimowicz, M. Szajewska, Karolina Wojciechowicz
{"title":"微分形式代数托架相关泊松结构的变形及其在实际低维李代数中的应用","authors":"A. Dobrogowska, G. Jakimowicz, M. Szajewska, Karolina Wojciechowicz","doi":"10.7546/giq-giq-20-2019-122-130","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to present the possibility of application of some well known tools of Poisson geometry to classification of real low dimensional Lie algebras. MSC : 53D17, 37K10","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deformation of the Poisson Structure Related to Algebroid Bracket of Differential Forms and Application to Real Low Dimentional Lie Algebras\",\"authors\":\"A. Dobrogowska, G. Jakimowicz, M. Szajewska, Karolina Wojciechowicz\",\"doi\":\"10.7546/giq-giq-20-2019-122-130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this paper is to present the possibility of application of some well known tools of Poisson geometry to classification of real low dimensional Lie algebras. MSC : 53D17, 37K10\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-giq-20-2019-122-130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-giq-20-2019-122-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目的是提出一些著名的泊松几何工具应用于实低维李代数分类的可能性。MSC: 53d17, 37k10
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation of the Poisson Structure Related to Algebroid Bracket of Differential Forms and Application to Real Low Dimentional Lie Algebras
The main goal of this paper is to present the possibility of application of some well known tools of Poisson geometry to classification of real low dimensional Lie algebras. MSC : 53D17, 37K10
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信