波动方程积分问题的正则性及其应用

V. Shakhmurov, R. Shahmurov
{"title":"波动方程积分问题的正则性及其应用","authors":"V. Shakhmurov, R. Shahmurov","doi":"10.31197/atnaa.1200398","DOIUrl":null,"url":null,"abstract":"In this paper, the integral problem for linear and nonlinear wave equations are studied.The equation involves elliptic operator L and abstract operator A in Hilbert space H. Here, assuming enough smoothness on the initial data given in corresponding interpolation spaces and operators the existence, uniqueness, L^{p}-regularity properties to solutions are established. By choosing the space H and operators L, A, the regularity properties to solutions of different classes of wave equations in the field of physics are obtained.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity properties of integral problems for wave equations and applications\",\"authors\":\"V. Shakhmurov, R. Shahmurov\",\"doi\":\"10.31197/atnaa.1200398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the integral problem for linear and nonlinear wave equations are studied.The equation involves elliptic operator L and abstract operator A in Hilbert space H. Here, assuming enough smoothness on the initial data given in corresponding interpolation spaces and operators the existence, uniqueness, L^{p}-regularity properties to solutions are established. By choosing the space H and operators L, A, the regularity properties to solutions of different classes of wave equations in the field of physics are obtained.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.1200398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1200398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了线性和非线性波动方程的积分问题。该方程涉及Hilbert空间h中的椭圆算子L和抽象算子A,在相应插值空间和算子给出的初始数据上假定足够光滑,建立了解的存在性、唯一性和L^{p}正则性。通过选取空间H和算符L、A,得到了物理领域中不同类型波动方程解的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity properties of integral problems for wave equations and applications
In this paper, the integral problem for linear and nonlinear wave equations are studied.The equation involves elliptic operator L and abstract operator A in Hilbert space H. Here, assuming enough smoothness on the initial data given in corresponding interpolation spaces and operators the existence, uniqueness, L^{p}-regularity properties to solutions are established. By choosing the space H and operators L, A, the regularity properties to solutions of different classes of wave equations in the field of physics are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信