{"title":"实仿射空间线排列补的拓扑","authors":"G. Ishikawa, Motoki Oyama","doi":"10.5427/jsing.2020.22v","DOIUrl":null,"url":null,"abstract":"It is shown that the diffeomorphism type of the complement to a real space line arrangement in any dimensional affine ambient space is determined only by the number of lines and the data on multiple points.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Topology of complements to real affine space line arrangements\",\"authors\":\"G. Ishikawa, Motoki Oyama\",\"doi\":\"10.5427/jsing.2020.22v\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that the diffeomorphism type of the complement to a real space line arrangement in any dimensional affine ambient space is determined only by the number of lines and the data on multiple points.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.22v\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.22v","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topology of complements to real affine space line arrangements
It is shown that the diffeomorphism type of the complement to a real space line arrangement in any dimensional affine ambient space is determined only by the number of lines and the data on multiple points.