{"title":"序列效应代数中的rsamnyi熵和rsamnyi散度","authors":"Zahra Eslami Giski","doi":"10.1142/s1230161220500080","DOIUrl":null,"url":null,"abstract":"The aim of this study is to extend the results concerning the Shannon entropy and Kullback–Leibler divergence in sequential effect algebra to the case of Rényi entropy and Rényi divergence. For this purpose, the Rényi entropy of finite partitions in sequential effect algebra and its conditional version are proposed and the basic properties of these entropy measures are derived. In addition, the notion of Rényi divergence of a partition in sequential effect algebra is introduced and the basic properties of this quantity are studied. In particular, it is proved that the Kullback–Leibler divergence and Shannon’s entropy of partitions in a given sequential effect algebra can be obtained as limits of their Rényi divergence and Rényi entropy respectively. Finally, to illustrate the results, some numerical examples are presented.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"26 1","pages":"2050008:1-2050008:30"},"PeriodicalIF":1.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rényi Entropy and Rényi Divergence in Sequential Effect Algebra\",\"authors\":\"Zahra Eslami Giski\",\"doi\":\"10.1142/s1230161220500080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to extend the results concerning the Shannon entropy and Kullback–Leibler divergence in sequential effect algebra to the case of Rényi entropy and Rényi divergence. For this purpose, the Rényi entropy of finite partitions in sequential effect algebra and its conditional version are proposed and the basic properties of these entropy measures are derived. In addition, the notion of Rényi divergence of a partition in sequential effect algebra is introduced and the basic properties of this quantity are studied. In particular, it is proved that the Kullback–Leibler divergence and Shannon’s entropy of partitions in a given sequential effect algebra can be obtained as limits of their Rényi divergence and Rényi entropy respectively. Finally, to illustrate the results, some numerical examples are presented.\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"26 1\",\"pages\":\"2050008:1-2050008:30\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s1230161220500080\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s1230161220500080","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Rényi Entropy and Rényi Divergence in Sequential Effect Algebra
The aim of this study is to extend the results concerning the Shannon entropy and Kullback–Leibler divergence in sequential effect algebra to the case of Rényi entropy and Rényi divergence. For this purpose, the Rényi entropy of finite partitions in sequential effect algebra and its conditional version are proposed and the basic properties of these entropy measures are derived. In addition, the notion of Rényi divergence of a partition in sequential effect algebra is introduced and the basic properties of this quantity are studied. In particular, it is proved that the Kullback–Leibler divergence and Shannon’s entropy of partitions in a given sequential effect algebra can be obtained as limits of their Rényi divergence and Rényi entropy respectively. Finally, to illustrate the results, some numerical examples are presented.
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.