离散级数的奥伯特对偶:归纳的第一步

Pub Date : 2019-06-07 DOI:10.3336/gm.54.1.07
Ivan Matić
{"title":"离散级数的奥伯特对偶:归纳的第一步","authors":"Ivan Matić","doi":"10.3336/gm.54.1.07","DOIUrl":null,"url":null,"abstract":"Let Gn denote either symplectic or odd special orthogonal group of rank n over a non-archimedean local field F . We provide an explicit description of the Aubert duals of irreducible representations of Gn which occur in the first inductive step in the realization of discrete series representations starting from the strongly positive ones. Our results might serve as a pattern for determination of Aubert duals of general discrete series of Gn and should produce an interesting part of the unitary dual of this group. Furthermore, we obtain an explicit form of some representations which are known to be unitarizable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Aubert duals of discrete series: the first inductive step\",\"authors\":\"Ivan Matić\",\"doi\":\"10.3336/gm.54.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Gn denote either symplectic or odd special orthogonal group of rank n over a non-archimedean local field F . We provide an explicit description of the Aubert duals of irreducible representations of Gn which occur in the first inductive step in the realization of discrete series representations starting from the strongly positive ones. Our results might serve as a pattern for determination of Aubert duals of general discrete series of Gn and should produce an interesting part of the unitary dual of this group. Furthermore, we obtain an explicit form of some representations which are known to be unitarizable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.54.1.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.54.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设Gn表示非阿基米德局部域F上秩为n的辛或奇特殊正交群。本文给出了从强正的离散级数表示开始,在实现离散级数表示的第一个归纳步骤中出现的Gn的不可约表示的Aubert对偶的显式描述。我们的结果可以作为确定Gn的一般离散级数的Aubert对偶的一个模式,并且应该产生这个群的幺正对偶的一个有趣的部分。进一步,我们得到了一些已知是可酉化的表示的显式形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Aubert duals of discrete series: the first inductive step
Let Gn denote either symplectic or odd special orthogonal group of rank n over a non-archimedean local field F . We provide an explicit description of the Aubert duals of irreducible representations of Gn which occur in the first inductive step in the realization of discrete series representations starting from the strongly positive ones. Our results might serve as a pattern for determination of Aubert duals of general discrete series of Gn and should produce an interesting part of the unitary dual of this group. Furthermore, we obtain an explicit form of some representations which are known to be unitarizable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信