{"title":"手写文字识别的CNN-N-Gram","authors":"Arik Poznanski, Lior Wolf","doi":"10.1109/CVPR.2016.253","DOIUrl":null,"url":null,"abstract":"Given an image of a handwritten word, a CNN is employed to estimate its n-gram frequency profile, which is the set of n-grams contained in the word. Frequencies for unigrams, bigrams and trigrams are estimated for the entire word and for parts of it. Canonical Correlation Analysis is then used to match the estimated profile to the true profiles of all words in a large dictionary. The CNN that is used employs several novelties such as the use of multiple fully connected branches. Applied to all commonly used handwriting recognition benchmarks, our method outperforms, by a very large margin, all existing methods.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"24 1","pages":"2305-2314"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":"{\"title\":\"CNN-N-Gram for HandwritingWord Recognition\",\"authors\":\"Arik Poznanski, Lior Wolf\",\"doi\":\"10.1109/CVPR.2016.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an image of a handwritten word, a CNN is employed to estimate its n-gram frequency profile, which is the set of n-grams contained in the word. Frequencies for unigrams, bigrams and trigrams are estimated for the entire word and for parts of it. Canonical Correlation Analysis is then used to match the estimated profile to the true profiles of all words in a large dictionary. The CNN that is used employs several novelties such as the use of multiple fully connected branches. Applied to all commonly used handwriting recognition benchmarks, our method outperforms, by a very large margin, all existing methods.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"24 1\",\"pages\":\"2305-2314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"155\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given an image of a handwritten word, a CNN is employed to estimate its n-gram frequency profile, which is the set of n-grams contained in the word. Frequencies for unigrams, bigrams and trigrams are estimated for the entire word and for parts of it. Canonical Correlation Analysis is then used to match the estimated profile to the true profiles of all words in a large dictionary. The CNN that is used employs several novelties such as the use of multiple fully connected branches. Applied to all commonly used handwriting recognition benchmarks, our method outperforms, by a very large margin, all existing methods.