大阶多重递归生成器的搜索

Kenneth B. Pasiah, L. Deng, Dale Bowman, Ching-Chi Yang
{"title":"大阶多重递归生成器的搜索","authors":"Kenneth B. Pasiah, L. Deng, Dale Bowman, Ching-Chi Yang","doi":"10.23919/ANNSIM52504.2021.9552067","DOIUrl":null,"url":null,"abstract":"Pseudo-random numbers (PRNs) are the basis for almost any statistical simulation and this depends largely on the quality of the pseudo-random number generator (PRNG) used. In this study, we used some results from number theory to propose an efficient method to accelerate the computer search of super-order maximum-period multiple recursive generators (MRGs). We conduct efficient computer searches and identify many efficient and portable MRGs of super-orders, 40751, 50551, and 50873; which respectively have equi-distribution property up to 40751, 50551, and 50873 dimensions, and period lengths of approximately 10380278.1, 10471730.6, and 10474729.3. Using the generalized Mersenne prime algorithm, we extend some known results of some efficient, portable and maximum-period MRGs. In particular, the DX/DL/DS/DT large-order generators are extended to super-order generators. An extensive empirical evaluation shows that these generators behave well when tested with the stringent Small Crush and Crush batteries of the TestU01 package.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"21 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching for Large-Order Multiple Recursive Generators\",\"authors\":\"Kenneth B. Pasiah, L. Deng, Dale Bowman, Ching-Chi Yang\",\"doi\":\"10.23919/ANNSIM52504.2021.9552067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudo-random numbers (PRNs) are the basis for almost any statistical simulation and this depends largely on the quality of the pseudo-random number generator (PRNG) used. In this study, we used some results from number theory to propose an efficient method to accelerate the computer search of super-order maximum-period multiple recursive generators (MRGs). We conduct efficient computer searches and identify many efficient and portable MRGs of super-orders, 40751, 50551, and 50873; which respectively have equi-distribution property up to 40751, 50551, and 50873 dimensions, and period lengths of approximately 10380278.1, 10471730.6, and 10474729.3. Using the generalized Mersenne prime algorithm, we extend some known results of some efficient, portable and maximum-period MRGs. In particular, the DX/DL/DS/DT large-order generators are extended to super-order generators. An extensive empirical evaluation shows that these generators behave well when tested with the stringent Small Crush and Crush batteries of the TestU01 package.\",\"PeriodicalId\":6782,\"journal\":{\"name\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"volume\":\"21 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Annual Modeling and Simulation Conference (ANNSIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ANNSIM52504.2021.9552067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伪随机数(prn)是几乎所有统计模拟的基础,这在很大程度上取决于所使用的伪随机数生成器(PRNG)的质量。在本研究中,我们利用数论的一些结果,提出了一种加速超阶最大周期多重递归发生器(mrg)计算机搜索的有效方法。我们进行了高效的计算机搜索,并识别了超级订单40751,50551和50873的许多高效和便携式mrg;它们分别具有40751、50551和50873维度的等分布特性,周期长度约为10380278.1、10471730.6和10474729.3。利用广义Mersenne素数算法,推广了一些有效的、可移植的、最大周期mrg的一些已知结果。特别地,将DX/DL/DS/DT大阶发生器推广到超阶发生器。广泛的经验评估表明,这些发电机在经过严格的TestU01封装的小挤压和挤压电池测试时表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Searching for Large-Order Multiple Recursive Generators
Pseudo-random numbers (PRNs) are the basis for almost any statistical simulation and this depends largely on the quality of the pseudo-random number generator (PRNG) used. In this study, we used some results from number theory to propose an efficient method to accelerate the computer search of super-order maximum-period multiple recursive generators (MRGs). We conduct efficient computer searches and identify many efficient and portable MRGs of super-orders, 40751, 50551, and 50873; which respectively have equi-distribution property up to 40751, 50551, and 50873 dimensions, and period lengths of approximately 10380278.1, 10471730.6, and 10474729.3. Using the generalized Mersenne prime algorithm, we extend some known results of some efficient, portable and maximum-period MRGs. In particular, the DX/DL/DS/DT large-order generators are extended to super-order generators. An extensive empirical evaluation shows that these generators behave well when tested with the stringent Small Crush and Crush batteries of the TestU01 package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信