在真实超导和基于俘获离子的量子计算机上的量子图像处理

IF 0.8 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
Alexander Geng, A. Moghiseh, C. Redenbach, K. Schladitz
{"title":"在真实超导和基于俘获离子的量子计算机上的量子图像处理","authors":"Alexander Geng, A. Moghiseh, C. Redenbach, K. Schladitz","doi":"10.1515/teme-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract The size and number of images and the amount of data we process every day have grown rapidly over the last years. Quantum computers promise to process this data more efficiently since classical images can be stored in quantum states. Experiments on quantum computer simulators prove the paradigms this promise is built on to be correct. However, currently, running the very same algorithms on a real quantum computer is often too error-prone to be of any practical use. We explore the current possibilities for image processing on real quantum computers. We redesign a commonly used quantum image encoding technique to reduce its susceptibility to errors. We show experimentally that the current size limit for images to be encoded on a quantum computer and subsequently retrieved with an error of at most 5 % is 2 × 2 pixels. A way to circumvent this limitation is to combine ideas of classical filtering with a quantum algorithm operating locally, only. We show the practicability of this strategy using the application example of edge detection. Our hybrid filtering scheme’s quantum part is an artificial neuron, working well on real quantum computers, too.","PeriodicalId":56086,"journal":{"name":"Tm-Technisches Messen","volume":"3 1","pages":"445 - 454"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum image processing on real superconducting and trapped-ion based quantum computers\",\"authors\":\"Alexander Geng, A. Moghiseh, C. Redenbach, K. Schladitz\",\"doi\":\"10.1515/teme-2023-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The size and number of images and the amount of data we process every day have grown rapidly over the last years. Quantum computers promise to process this data more efficiently since classical images can be stored in quantum states. Experiments on quantum computer simulators prove the paradigms this promise is built on to be correct. However, currently, running the very same algorithms on a real quantum computer is often too error-prone to be of any practical use. We explore the current possibilities for image processing on real quantum computers. We redesign a commonly used quantum image encoding technique to reduce its susceptibility to errors. We show experimentally that the current size limit for images to be encoded on a quantum computer and subsequently retrieved with an error of at most 5 % is 2 × 2 pixels. A way to circumvent this limitation is to combine ideas of classical filtering with a quantum algorithm operating locally, only. We show the practicability of this strategy using the application example of edge detection. Our hybrid filtering scheme’s quantum part is an artificial neuron, working well on real quantum computers, too.\",\"PeriodicalId\":56086,\"journal\":{\"name\":\"Tm-Technisches Messen\",\"volume\":\"3 1\",\"pages\":\"445 - 454\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tm-Technisches Messen\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/teme-2023-0008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tm-Technisches Messen","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/teme-2023-0008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,我们每天处理的图像的大小和数量以及数据量都在迅速增长。量子计算机有望更有效地处理这些数据,因为经典图像可以存储在量子态中。在量子计算机模拟器上的实验证明,这一承诺所基于的范式是正确的。然而,目前,在真正的量子计算机上运行同样的算法往往太容易出错,没有任何实际用途。我们探索当前在真实量子计算机上进行图像处理的可能性。我们重新设计了一种常用的量子图像编码技术,以降低其对误差的敏感性。我们通过实验证明,目前在量子计算机上编码并随后以最多5 %的误差检索的图像的尺寸限制为2 × 2像素。规避这一限制的一种方法是将经典滤波的思想与仅在局部运行的量子算法结合起来。我们通过边缘检测的应用实例证明了该策略的实用性。我们的混合滤波方案的量子部分是一个人工神经元,在真实的量子计算机上也能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum image processing on real superconducting and trapped-ion based quantum computers
Abstract The size and number of images and the amount of data we process every day have grown rapidly over the last years. Quantum computers promise to process this data more efficiently since classical images can be stored in quantum states. Experiments on quantum computer simulators prove the paradigms this promise is built on to be correct. However, currently, running the very same algorithms on a real quantum computer is often too error-prone to be of any practical use. We explore the current possibilities for image processing on real quantum computers. We redesign a commonly used quantum image encoding technique to reduce its susceptibility to errors. We show experimentally that the current size limit for images to be encoded on a quantum computer and subsequently retrieved with an error of at most 5 % is 2 × 2 pixels. A way to circumvent this limitation is to combine ideas of classical filtering with a quantum algorithm operating locally, only. We show the practicability of this strategy using the application example of edge detection. Our hybrid filtering scheme’s quantum part is an artificial neuron, working well on real quantum computers, too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tm-Technisches Messen
Tm-Technisches Messen 工程技术-仪器仪表
CiteScore
1.70
自引率
20.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: The journal promotes dialogue between the developers of application-oriented sensors, measurement systems, and measurement methods and the manufacturers and measurement technologists who use them. Topics The manufacture and characteristics of new sensors for measurement technology in the industrial sector New measurement methods Hardware and software based processing and analysis of measurement signals to obtain measurement values The outcomes of employing new measurement systems and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信