利用深度神经网络改进航班预计到达时间预测

J. Silvestre, Miguel de Santiago, A. Bregón, Miguel A. Martínez-Prieto, P. C. Álvarez-Esteban
{"title":"利用深度神经网络改进航班预计到达时间预测","authors":"J. Silvestre, Miguel de Santiago, A. Bregón, Miguel A. Martínez-Prieto, P. C. Álvarez-Esteban","doi":"10.3390/engproc2021013003","DOIUrl":null,"url":null,"abstract":"Predictable operations are the basis of efficient air traffic management. In this context, accurately estimating the arrival time to the destination airport is fundamental to make tactical decisions about an optimal schedule of landing and take-off operations. In this paper, we evaluate different deep learning models based on LSTM architectures for predicting estimated time of arrival of commercial flights, mainly using surveillance data from OpenSky Network. We observed that the number of previous states of the flight used to make the prediction have great influence on the accuracy of the estimation, independently of the architecture. The best model, with an input sequence length of 50, has reported a MAE of 3.33 min and a RMSE of 5.42 min on the test set, with MAE values of 5.67 and 2.13 min 90 and 15 min before the end of the flight, respectively.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Use of Deep Neural Networks to Improve Flights Estimated Time of Arrival Predictions\",\"authors\":\"J. Silvestre, Miguel de Santiago, A. Bregón, Miguel A. Martínez-Prieto, P. C. Álvarez-Esteban\",\"doi\":\"10.3390/engproc2021013003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictable operations are the basis of efficient air traffic management. In this context, accurately estimating the arrival time to the destination airport is fundamental to make tactical decisions about an optimal schedule of landing and take-off operations. In this paper, we evaluate different deep learning models based on LSTM architectures for predicting estimated time of arrival of commercial flights, mainly using surveillance data from OpenSky Network. We observed that the number of previous states of the flight used to make the prediction have great influence on the accuracy of the estimation, independently of the architecture. The best model, with an input sequence length of 50, has reported a MAE of 3.33 min and a RMSE of 5.42 min on the test set, with MAE values of 5.67 and 2.13 min 90 and 15 min before the end of the flight, respectively.\",\"PeriodicalId\":11748,\"journal\":{\"name\":\"Engineering Proceedings\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/engproc2021013003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021013003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可预测的操作是有效的空中交通管理的基础。在这种情况下,准确估计到达目的地机场的时间对于制定最佳着陆和起飞操作计划的战术决策至关重要。在本文中,我们评估了基于LSTM架构的不同深度学习模型,主要使用来自OpenSky Network的监控数据来预测商业航班的估计到达时间。我们观察到,用于进行预测的飞行先前状态的数量对估计的准确性有很大的影响,与体系结构无关。输入序列长度为50的最佳模型在测试集上的MAE为3.33 min, RMSE为5.42 min,在飞行结束前90分钟和15分钟的MAE值分别为5.67和2.13 min。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Use of Deep Neural Networks to Improve Flights Estimated Time of Arrival Predictions
Predictable operations are the basis of efficient air traffic management. In this context, accurately estimating the arrival time to the destination airport is fundamental to make tactical decisions about an optimal schedule of landing and take-off operations. In this paper, we evaluate different deep learning models based on LSTM architectures for predicting estimated time of arrival of commercial flights, mainly using surveillance data from OpenSky Network. We observed that the number of previous states of the flight used to make the prediction have great influence on the accuracy of the estimation, independently of the architecture. The best model, with an input sequence length of 50, has reported a MAE of 3.33 min and a RMSE of 5.42 min on the test set, with MAE values of 5.67 and 2.13 min 90 and 15 min before the end of the flight, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信