新研制的高镁高强铝合金在模拟海水环境下的腐蚀行为

Xiaodan Lv, Shuhui Liu, H. Xie, Qingming Cao, Chengdong Zhang, Fanwei Chen, Bin Liu
{"title":"新研制的高镁高强铝合金在模拟海水环境下的腐蚀行为","authors":"Xiaodan Lv, Shuhui Liu, H. Xie, Qingming Cao, Chengdong Zhang, Fanwei Chen, Bin Liu","doi":"10.1002/maco.202213065","DOIUrl":null,"url":null,"abstract":"AMg61 (Al‐6.2% Mg), a novel form of high‐strength, high‐magnesium‐content aluminum alloy, has been developed for specific maritime engineering in recent years, while its corrosion behavior in seawater is still unknown. Therefore, the corrosion behavior of AMg61 in the simulated seawater was investigated herein, using a weight‐loss test and different electrochemical measurements. In addition, corrosion morphology and chemical contents were characterized by metallography, scanning electron microscopy, and energy‐dispersive spectroscopy. The results demonstrated that intergranular corrosion and microcracks developed first in the second phase of AMg61, followed by pitting corrosion. The matrix of AMg61, on the other hand, exhibited a uniform and exfoliation corrosion. The corrosion rate gradually decreased over time.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"5 1","pages":"1318 - 1329"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion behavior of a newly developed high strength aluminum alloy with high magnesium content under simulated seawater environment\",\"authors\":\"Xiaodan Lv, Shuhui Liu, H. Xie, Qingming Cao, Chengdong Zhang, Fanwei Chen, Bin Liu\",\"doi\":\"10.1002/maco.202213065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AMg61 (Al‐6.2% Mg), a novel form of high‐strength, high‐magnesium‐content aluminum alloy, has been developed for specific maritime engineering in recent years, while its corrosion behavior in seawater is still unknown. Therefore, the corrosion behavior of AMg61 in the simulated seawater was investigated herein, using a weight‐loss test and different electrochemical measurements. In addition, corrosion morphology and chemical contents were characterized by metallography, scanning electron microscopy, and energy‐dispersive spectroscopy. The results demonstrated that intergranular corrosion and microcracks developed first in the second phase of AMg61, followed by pitting corrosion. The matrix of AMg61, on the other hand, exhibited a uniform and exfoliation corrosion. The corrosion rate gradually decreased over time.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"5 1\",\"pages\":\"1318 - 1329\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202213065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202213065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AMg61 (Al - 6.2% Mg)是一种新型的高强度、高镁含量铝合金,近年来被开发用于特定的海洋工程,但其在海水中的腐蚀行为尚不清楚。因此,本文采用失重试验和不同的电化学测量方法研究了AMg61在模拟海水中的腐蚀行为。此外,通过金相、扫描电镜和能量色散光谱对腐蚀形貌和化学成分进行了表征。结果表明:AMg61第二相首先发生晶间腐蚀和微裂纹,其次发生点蚀;而AMg61的基体则表现为均匀的剥落腐蚀。随着时间的推移,腐蚀速率逐渐降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrosion behavior of a newly developed high strength aluminum alloy with high magnesium content under simulated seawater environment
AMg61 (Al‐6.2% Mg), a novel form of high‐strength, high‐magnesium‐content aluminum alloy, has been developed for specific maritime engineering in recent years, while its corrosion behavior in seawater is still unknown. Therefore, the corrosion behavior of AMg61 in the simulated seawater was investigated herein, using a weight‐loss test and different electrochemical measurements. In addition, corrosion morphology and chemical contents were characterized by metallography, scanning electron microscopy, and energy‐dispersive spectroscopy. The results demonstrated that intergranular corrosion and microcracks developed first in the second phase of AMg61, followed by pitting corrosion. The matrix of AMg61, on the other hand, exhibited a uniform and exfoliation corrosion. The corrosion rate gradually decreased over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信