体硅中800V横向igbt的雪崩坚固性

G. Camuso, N. Udugampola, V. Pathirana, T. Trajkovic, F. Udrea
{"title":"体硅中800V横向igbt的雪崩坚固性","authors":"G. Camuso, N. Udugampola, V. Pathirana, T. Trajkovic, F. Udrea","doi":"10.1109/EPE.2014.6910917","DOIUrl":null,"url":null,"abstract":"Avalanche capability of 800V rated Lateral IGBTs (LIGBTs) fabricated using bulk CMOS technology has been investigated for the first time for both turn-on and turn-off. The LIGBTs have been designed for 65kHz operation in energy-efficient, compact off-line power supplies. Measurements of the device during turn-on revealed failures under high line voltages. The device was analysed using a combination of measurements and simulations which revealed that the dynamic avalanche was the cause of failure. An optimised LIGBT has been designed, simulated, fabricated and tested. The optimised device exhibits higher breakdown voltage and improved turn-on avalanche capability. Moreover, the optimised device showed improved avalanche capability during turn-off and reduced likelihood of latch-up.","PeriodicalId":6508,"journal":{"name":"2014 16th European Conference on Power Electronics and Applications","volume":"177 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Avalanche ruggedness of 800V Lateral IGBTs in bulk Si\",\"authors\":\"G. Camuso, N. Udugampola, V. Pathirana, T. Trajkovic, F. Udrea\",\"doi\":\"10.1109/EPE.2014.6910917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Avalanche capability of 800V rated Lateral IGBTs (LIGBTs) fabricated using bulk CMOS technology has been investigated for the first time for both turn-on and turn-off. The LIGBTs have been designed for 65kHz operation in energy-efficient, compact off-line power supplies. Measurements of the device during turn-on revealed failures under high line voltages. The device was analysed using a combination of measurements and simulations which revealed that the dynamic avalanche was the cause of failure. An optimised LIGBT has been designed, simulated, fabricated and tested. The optimised device exhibits higher breakdown voltage and improved turn-on avalanche capability. Moreover, the optimised device showed improved avalanche capability during turn-off and reduced likelihood of latch-up.\",\"PeriodicalId\":6508,\"journal\":{\"name\":\"2014 16th European Conference on Power Electronics and Applications\",\"volume\":\"177 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th European Conference on Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE.2014.6910917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th European Conference on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2014.6910917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

首次研究了采用大块CMOS技术制造的800V额定横向igbt (lightts)的雪崩能力,包括导通和关断。这些灯被设计为在节能、紧凑的离线电源中运行65kHz。该设备在接通时的测量显示在高压线路下出现故障。该装置通过测量和模拟相结合的方法进行了分析,结果显示,动态雪崩是导致故障的原因。一个优化的光已经设计,模拟,制造和测试。优化后的器件具有更高的击穿电压和改进的导通雪崩能力。此外,优化后的装置在关闭时显示出更好的雪崩能力,并降低了闭锁的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Avalanche ruggedness of 800V Lateral IGBTs in bulk Si
Avalanche capability of 800V rated Lateral IGBTs (LIGBTs) fabricated using bulk CMOS technology has been investigated for the first time for both turn-on and turn-off. The LIGBTs have been designed for 65kHz operation in energy-efficient, compact off-line power supplies. Measurements of the device during turn-on revealed failures under high line voltages. The device was analysed using a combination of measurements and simulations which revealed that the dynamic avalanche was the cause of failure. An optimised LIGBT has been designed, simulated, fabricated and tested. The optimised device exhibits higher breakdown voltage and improved turn-on avalanche capability. Moreover, the optimised device showed improved avalanche capability during turn-off and reduced likelihood of latch-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信