{"title":"工业人机界面再造:方法、目标和挑战","authors":"B. Dorninger, M. Moser, Albin Kern","doi":"10.1109/SANER.2018.8330257","DOIUrl":null,"url":null,"abstract":"Human Machine Interfaces (HMI) play a pivotal role in operating industrial machines. Depending on the extension of a manufacturers domain and the range of its machines as well as the possible options and variants, the ensuing HMI component repository may become substantially large, resulting in significant maintenance requirements and subsequent cost. A combination of cost pressure and other factors, such as significant change of requirements, may then call for a substantial reengineering. A viable alternative to manually reengineering the whole HMI framework might be the use of (semi)-automated reengineering techniques for suitable parts. We describe such a model based reengineering procedure relying on static analysis of the existing source code for suited aspects of a large HMI framework. We will sketch our overall approach including the objectives and highlight some important challenges of transforming HMI component information extracted from source code into a representation developed for the completely redesigned HMI infrastructure in the light of an existing product assembly and configuration process at a large machinery manufacturer.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"28 1","pages":"547-551"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reengineering an industrial HMI: Approach, objectives, and challenges\",\"authors\":\"B. Dorninger, M. Moser, Albin Kern\",\"doi\":\"10.1109/SANER.2018.8330257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Machine Interfaces (HMI) play a pivotal role in operating industrial machines. Depending on the extension of a manufacturers domain and the range of its machines as well as the possible options and variants, the ensuing HMI component repository may become substantially large, resulting in significant maintenance requirements and subsequent cost. A combination of cost pressure and other factors, such as significant change of requirements, may then call for a substantial reengineering. A viable alternative to manually reengineering the whole HMI framework might be the use of (semi)-automated reengineering techniques for suitable parts. We describe such a model based reengineering procedure relying on static analysis of the existing source code for suited aspects of a large HMI framework. We will sketch our overall approach including the objectives and highlight some important challenges of transforming HMI component information extracted from source code into a representation developed for the completely redesigned HMI infrastructure in the light of an existing product assembly and configuration process at a large machinery manufacturer.\",\"PeriodicalId\":6602,\"journal\":{\"name\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"28 1\",\"pages\":\"547-551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2018.8330257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reengineering an industrial HMI: Approach, objectives, and challenges
Human Machine Interfaces (HMI) play a pivotal role in operating industrial machines. Depending on the extension of a manufacturers domain and the range of its machines as well as the possible options and variants, the ensuing HMI component repository may become substantially large, resulting in significant maintenance requirements and subsequent cost. A combination of cost pressure and other factors, such as significant change of requirements, may then call for a substantial reengineering. A viable alternative to manually reengineering the whole HMI framework might be the use of (semi)-automated reengineering techniques for suitable parts. We describe such a model based reengineering procedure relying on static analysis of the existing source code for suited aspects of a large HMI framework. We will sketch our overall approach including the objectives and highlight some important challenges of transforming HMI component information extracted from source code into a representation developed for the completely redesigned HMI infrastructure in the light of an existing product assembly and configuration process at a large machinery manufacturer.