TOF类别

CoRR Pub Date : 2018-04-27 DOI:10.4204/EPTCS.287.4
J. Cockett, Cole Comfort
{"title":"TOF类别","authors":"J. Cockett, Cole Comfort","doi":"10.4204/EPTCS.287.4","DOIUrl":null,"url":null,"abstract":"We provide a complete set of identities for the symmetric monoidal category, TOF, generated by the Toffoli gate and computational ancillary bits. We do so by demonstrating that the functor which evaluates circuits on total points, is an equivalence into the full subcategory of sets and partial isomorphisms with objects finite powers of the two element set. The structure of the proof builds -- and follows the proof of Cockett et al.-- which provided a full set of identities for the cnot gate with computational ancillary bits. Thus, first it is shown that TOF is a discrete inverse category in which all of the identities for the cnot gate hold; and then a normal form for the restriction idempotents is constructed which corresponds precisely to subobjects of the total points of TOF. This is then used to show that TOF is equivalent to FPinj2, the full subcategory of sets and partial isomorphisms in which objects have cardinality a power of 2.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"48 1","pages":"67-84"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The category TOF\",\"authors\":\"J. Cockett, Cole Comfort\",\"doi\":\"10.4204/EPTCS.287.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a complete set of identities for the symmetric monoidal category, TOF, generated by the Toffoli gate and computational ancillary bits. We do so by demonstrating that the functor which evaluates circuits on total points, is an equivalence into the full subcategory of sets and partial isomorphisms with objects finite powers of the two element set. The structure of the proof builds -- and follows the proof of Cockett et al.-- which provided a full set of identities for the cnot gate with computational ancillary bits. Thus, first it is shown that TOF is a discrete inverse category in which all of the identities for the cnot gate hold; and then a normal form for the restriction idempotents is constructed which corresponds precisely to subobjects of the total points of TOF. This is then used to show that TOF is equivalent to FPinj2, the full subcategory of sets and partial isomorphisms in which objects have cardinality a power of 2.\",\"PeriodicalId\":10720,\"journal\":{\"name\":\"CoRR\",\"volume\":\"48 1\",\"pages\":\"67-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CoRR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.287.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.287.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提供了一套完整的恒等式,对称单一性范畴,TOF,由Toffoli门和计算辅助位产生。我们通过证明计算总点上的电路的函子,是一个等价于集合的全子范畴和具有对象的二元素集的有限幂的部分同构。证明的结构构建——并遵循Cockett等人的证明——它为带有计算辅助比特的门提供了一整套身份。因此,首先证明了TOF是一个离散逆范畴,在这个范畴中,所有的门限恒等式都成立;然后构造了约束幂等函数的标准形式,该形式精确地对应于TOF总点的子对象。然后用它来证明TOF等价于FPinj2, FPinj2是集合和部分同构的完整子范畴,其中对象的基数为2的幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The category TOF
We provide a complete set of identities for the symmetric monoidal category, TOF, generated by the Toffoli gate and computational ancillary bits. We do so by demonstrating that the functor which evaluates circuits on total points, is an equivalence into the full subcategory of sets and partial isomorphisms with objects finite powers of the two element set. The structure of the proof builds -- and follows the proof of Cockett et al.-- which provided a full set of identities for the cnot gate with computational ancillary bits. Thus, first it is shown that TOF is a discrete inverse category in which all of the identities for the cnot gate hold; and then a normal form for the restriction idempotents is constructed which corresponds precisely to subobjects of the total points of TOF. This is then used to show that TOF is equivalent to FPinj2, the full subcategory of sets and partial isomorphisms in which objects have cardinality a power of 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信