基于深度信念网络和Dempster-Shafer证据理论的轴承故障诊断

Duy-Tang Hoang, Hee-Jun Kang
{"title":"基于深度信念网络和Dempster-Shafer证据理论的轴承故障诊断","authors":"Duy-Tang Hoang, Hee-Jun Kang","doi":"10.1109/ISIE.2018.8433778","DOIUrl":null,"url":null,"abstract":"Bearing takes an important part in rotary machines. In industrial manufacturing systems, bearing fault diagnosis is a critical task which helps to reduce the cost for maintaining. This paper proposes a novel bearing fault diagnosis algorithm for rotary machine in which multiple sensors are installed using Deep Belief Network and Dempster-Shafer evidence theory. First, for signals from each sensor, a Deep Belief Network is used to extracted features. Each feature set generated by the corresponding Deep Belief Network is classifier by one softmax classifier. Finally, prediction results of all softmax classifiers are fused by DS evidence theory to generate the final prediction of bearing fault. Experiments are carried out with bearing data from Case Western Reserve University Data Central.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"63 1","pages":"841-846"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deep Belief Network and Dempster-Shafer Evidence Theory for Bearing Fault Diagnosis\",\"authors\":\"Duy-Tang Hoang, Hee-Jun Kang\",\"doi\":\"10.1109/ISIE.2018.8433778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bearing takes an important part in rotary machines. In industrial manufacturing systems, bearing fault diagnosis is a critical task which helps to reduce the cost for maintaining. This paper proposes a novel bearing fault diagnosis algorithm for rotary machine in which multiple sensors are installed using Deep Belief Network and Dempster-Shafer evidence theory. First, for signals from each sensor, a Deep Belief Network is used to extracted features. Each feature set generated by the corresponding Deep Belief Network is classifier by one softmax classifier. Finally, prediction results of all softmax classifiers are fused by DS evidence theory to generate the final prediction of bearing fault. Experiments are carried out with bearing data from Case Western Reserve University Data Central.\",\"PeriodicalId\":6597,\"journal\":{\"name\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"63 1\",\"pages\":\"841-846\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2018.8433778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2018.8433778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

轴承在旋转机械中起着重要的作用。在工业制造系统中,轴承故障诊断是降低维修成本的一项关键任务。基于深度信念网络和Dempster-Shafer证据理论,提出了一种安装多传感器的旋转机械轴承故障诊断算法。首先,对来自每个传感器的信号,使用深度信念网络进行特征提取;由相应的Deep Belief Network生成的每个特征集由一个softmax分类器进行分类。最后,利用DS证据理论对各分类器的预测结果进行融合,得到轴承故障的最终预测结果。实验采用凯斯西储大学数据中心的轴承数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Belief Network and Dempster-Shafer Evidence Theory for Bearing Fault Diagnosis
Bearing takes an important part in rotary machines. In industrial manufacturing systems, bearing fault diagnosis is a critical task which helps to reduce the cost for maintaining. This paper proposes a novel bearing fault diagnosis algorithm for rotary machine in which multiple sensors are installed using Deep Belief Network and Dempster-Shafer evidence theory. First, for signals from each sensor, a Deep Belief Network is used to extracted features. Each feature set generated by the corresponding Deep Belief Network is classifier by one softmax classifier. Finally, prediction results of all softmax classifiers are fused by DS evidence theory to generate the final prediction of bearing fault. Experiments are carried out with bearing data from Case Western Reserve University Data Central.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信