{"title":"用于人群计数的二阶卷积网络","authors":"Luyang Wang, Qiang Zhai, B. Yin, Hazrat Bilal","doi":"10.1117/12.2540362","DOIUrl":null,"url":null,"abstract":"Single image crowd counting remains challenging primarily due to various issues, such as large scale variations, perspective and non-uniform crowd distribution. In this paper, we propose a novel architecture referred to Second-Order Convolutional Network (SOCN) to deal with this task from the perspective of improving the feature transformation capability of the network. The proposed SOCN applies a convolutional neural network as the backbone. We introduce three cascaded second-order blocks located behind the backbone to augment the family of transformation operations and increase the nonlinearity of the network, which can extract multi-scale and discriminative features. Furthermore, we design a context attention module (CAM) including dilated convolutions to assign weights to the score map of each second-order block for the purpose that the features which contribute to counting can be highlighted. We conduct various experiments on ShanghaiTeach1 and UCF_CC_502 datasets, and the results demonstrate the effectiveness of our method.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"65 1","pages":"111980T - 111980T-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Second-order convolutional network for crowd counting\",\"authors\":\"Luyang Wang, Qiang Zhai, B. Yin, Hazrat Bilal\",\"doi\":\"10.1117/12.2540362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single image crowd counting remains challenging primarily due to various issues, such as large scale variations, perspective and non-uniform crowd distribution. In this paper, we propose a novel architecture referred to Second-Order Convolutional Network (SOCN) to deal with this task from the perspective of improving the feature transformation capability of the network. The proposed SOCN applies a convolutional neural network as the backbone. We introduce three cascaded second-order blocks located behind the backbone to augment the family of transformation operations and increase the nonlinearity of the network, which can extract multi-scale and discriminative features. Furthermore, we design a context attention module (CAM) including dilated convolutions to assign weights to the score map of each second-order block for the purpose that the features which contribute to counting can be highlighted. We conduct various experiments on ShanghaiTeach1 and UCF_CC_502 datasets, and the results demonstrate the effectiveness of our method.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"65 1\",\"pages\":\"111980T - 111980T-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2540362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Second-order convolutional network for crowd counting
Single image crowd counting remains challenging primarily due to various issues, such as large scale variations, perspective and non-uniform crowd distribution. In this paper, we propose a novel architecture referred to Second-Order Convolutional Network (SOCN) to deal with this task from the perspective of improving the feature transformation capability of the network. The proposed SOCN applies a convolutional neural network as the backbone. We introduce three cascaded second-order blocks located behind the backbone to augment the family of transformation operations and increase the nonlinearity of the network, which can extract multi-scale and discriminative features. Furthermore, we design a context attention module (CAM) including dilated convolutions to assign weights to the score map of each second-order block for the purpose that the features which contribute to counting can be highlighted. We conduct various experiments on ShanghaiTeach1 and UCF_CC_502 datasets, and the results demonstrate the effectiveness of our method.