2009-2020年第24太阳周期地磁风暴活动的统计特征

{"title":"2009-2020年第24太阳周期地磁风暴活动的统计特征","authors":"","doi":"10.26565/2311-0872-2020-33-06","DOIUrl":null,"url":null,"abstract":"Urgency. The atmosphere and geospace are widely used as a radio channel in solving problems of radar, radio navigation, direction finding, radio communication, radio astronomy, and the remote sensing of the Earth from space or the near-earth environment from the surface of the planet. The parameters of the atmospheric-space radio channel are determined by the state of tropospheric and space weather, which is formed mainly by non-stationary processes on the Sun (solar storms) and partly by high-energy processes on the Earth and in the atmosphere. Geospace storms give rise to the strongest disturbances of the atmospheric-space radio channel, and it is important to note that these storms are diverse, so that no two storms are alike. At the same time, storms have both similar and individual features. Currently, there is insufficient knowledge about both of these features, and their study remains an urgent task of space geophysics and space radio physics. In particular, the identification of general patterns is advisable by performing a statistical analysis of a large number of storms. The aim of this work is to statistically analyze the parameters of the solar wind and geomagnetic field during the Solar Cycle 24 activity (2009–2020). Methods and Methodology. The parameters of the disturbed solar wind (number density nsw, velocity Vsw, and temperature Tsw), the disturbed values of the By- and Bz-components of the interplanetary magnetic field, which is the cause of magnetic storms on Earth, as well as the indices of geomagnetic activity (AE, Dst and Kp) are selected as source input to the study. In this paper, geomagnetic storms with Kр ≥ 5 or G1, G2, G3, and G4 geomagnetic storms are considered. In total, there were 153 storms with Kp ≥ 5. The time series of the nsw, Vsw, Tsw maximum values, of the By- and Bz-components, and of the AE, Dst and Kp indices, as well as of the Bz-component and the Dst index minimum values have been analyzed. Results. The main statistical characteristics of the parameters of the solar wind, interplanetary magnetic field, and of the geomagnetic field have been determined for 153 events that took place during Solar Cycle 24. Conclusions. The geomagnetic situation during Solar Cycle 24 was calmer than during Solar Cycle 23.","PeriodicalId":52802,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical characteristics of geomagnetic storm activity during solar cycle 24, 2009–2020\",\"authors\":\"\",\"doi\":\"10.26565/2311-0872-2020-33-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urgency. The atmosphere and geospace are widely used as a radio channel in solving problems of radar, radio navigation, direction finding, radio communication, radio astronomy, and the remote sensing of the Earth from space or the near-earth environment from the surface of the planet. The parameters of the atmospheric-space radio channel are determined by the state of tropospheric and space weather, which is formed mainly by non-stationary processes on the Sun (solar storms) and partly by high-energy processes on the Earth and in the atmosphere. Geospace storms give rise to the strongest disturbances of the atmospheric-space radio channel, and it is important to note that these storms are diverse, so that no two storms are alike. At the same time, storms have both similar and individual features. Currently, there is insufficient knowledge about both of these features, and their study remains an urgent task of space geophysics and space radio physics. In particular, the identification of general patterns is advisable by performing a statistical analysis of a large number of storms. The aim of this work is to statistically analyze the parameters of the solar wind and geomagnetic field during the Solar Cycle 24 activity (2009–2020). Methods and Methodology. The parameters of the disturbed solar wind (number density nsw, velocity Vsw, and temperature Tsw), the disturbed values of the By- and Bz-components of the interplanetary magnetic field, which is the cause of magnetic storms on Earth, as well as the indices of geomagnetic activity (AE, Dst and Kp) are selected as source input to the study. In this paper, geomagnetic storms with Kр ≥ 5 or G1, G2, G3, and G4 geomagnetic storms are considered. In total, there were 153 storms with Kp ≥ 5. The time series of the nsw, Vsw, Tsw maximum values, of the By- and Bz-components, and of the AE, Dst and Kp indices, as well as of the Bz-component and the Dst index minimum values have been analyzed. Results. The main statistical characteristics of the parameters of the solar wind, interplanetary magnetic field, and of the geomagnetic field have been determined for 153 events that took place during Solar Cycle 24. Conclusions. The geomagnetic situation during Solar Cycle 24 was calmer than during Solar Cycle 23.\",\"PeriodicalId\":52802,\"journal\":{\"name\":\"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2311-0872-2020-33-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2311-0872-2020-33-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

紧迫感。大气和地球空间作为无线电信道被广泛应用于解决雷达、无线电导航、测向、无线电通信、射电天文学以及从空间或从地球表面对近地环境进行遥感等问题。大气-空间无线电信道的参数是由对流层和空间天气的状态决定的,对流层和空间天气主要由太阳上的非平稳过程(太阳风暴)形成,部分由地球和大气中的高能过程形成。地球空间风暴会对大气-空间无线电频道产生最强烈的干扰,需要注意的是,这些风暴是多种多样的,因此没有两个风暴是相同的。同时,风暴既有相似的特征,又有各自的特征。目前,对这两种特征的认识还不够充分,对它们的研究仍然是空间地球物理和空间射电物理学的一项紧迫任务。特别是,通过对大量风暴进行统计分析来确定一般模式是可取的。本研究的目的是统计分析太阳第24周期活动(2009-2020)期间太阳风和地磁场的参数。方法和方法论。选取受扰动的太阳风参数(数密度nsw、速度Vsw、温度Tsw)、引起地球磁暴的行星际磁场By-分量和bz分量的扰动值以及地磁活动指标(AE、Dst和Kp)作为研究的源输入。本文考虑kr≥5或G1、G2、G3、G4型地磁风暴。其中,Kp≥5的风暴有153次。对nsw、Vsw、Tsw最大值、By分量和bz分量、AE、Dst和Kp指数、bz分量和Dst指数最小值的时间序列进行了分析。对太阳活动周期24内发生的153个事件,确定了太阳风、行星际磁场和地磁场参数的主要统计特征。第24太阳活动周期的地磁情况比第23太阳活动周期平静。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical characteristics of geomagnetic storm activity during solar cycle 24, 2009–2020
Urgency. The atmosphere and geospace are widely used as a radio channel in solving problems of radar, radio navigation, direction finding, radio communication, radio astronomy, and the remote sensing of the Earth from space or the near-earth environment from the surface of the planet. The parameters of the atmospheric-space radio channel are determined by the state of tropospheric and space weather, which is formed mainly by non-stationary processes on the Sun (solar storms) and partly by high-energy processes on the Earth and in the atmosphere. Geospace storms give rise to the strongest disturbances of the atmospheric-space radio channel, and it is important to note that these storms are diverse, so that no two storms are alike. At the same time, storms have both similar and individual features. Currently, there is insufficient knowledge about both of these features, and their study remains an urgent task of space geophysics and space radio physics. In particular, the identification of general patterns is advisable by performing a statistical analysis of a large number of storms. The aim of this work is to statistically analyze the parameters of the solar wind and geomagnetic field during the Solar Cycle 24 activity (2009–2020). Methods and Methodology. The parameters of the disturbed solar wind (number density nsw, velocity Vsw, and temperature Tsw), the disturbed values of the By- and Bz-components of the interplanetary magnetic field, which is the cause of magnetic storms on Earth, as well as the indices of geomagnetic activity (AE, Dst and Kp) are selected as source input to the study. In this paper, geomagnetic storms with Kр ≥ 5 or G1, G2, G3, and G4 geomagnetic storms are considered. In total, there were 153 storms with Kp ≥ 5. The time series of the nsw, Vsw, Tsw maximum values, of the By- and Bz-components, and of the AE, Dst and Kp indices, as well as of the Bz-component and the Dst index minimum values have been analyzed. Results. The main statistical characteristics of the parameters of the solar wind, interplanetary magnetic field, and of the geomagnetic field have been determined for 153 events that took place during Solar Cycle 24. Conclusions. The geomagnetic situation during Solar Cycle 24 was calmer than during Solar Cycle 23.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信