{"title":"2009-2020年第24太阳周期地磁风暴活动的统计特征","authors":"","doi":"10.26565/2311-0872-2020-33-06","DOIUrl":null,"url":null,"abstract":"Urgency. The atmosphere and geospace are widely used as a radio channel in solving problems of radar, radio navigation, direction finding, radio communication, radio astronomy, and the remote sensing of the Earth from space or the near-earth environment from the surface of the planet. The parameters of the atmospheric-space radio channel are determined by the state of tropospheric and space weather, which is formed mainly by non-stationary processes on the Sun (solar storms) and partly by high-energy processes on the Earth and in the atmosphere. Geospace storms give rise to the strongest disturbances of the atmospheric-space radio channel, and it is important to note that these storms are diverse, so that no two storms are alike. At the same time, storms have both similar and individual features. Currently, there is insufficient knowledge about both of these features, and their study remains an urgent task of space geophysics and space radio physics. In particular, the identification of general patterns is advisable by performing a statistical analysis of a large number of storms. The aim of this work is to statistically analyze the parameters of the solar wind and geomagnetic field during the Solar Cycle 24 activity (2009–2020). Methods and Methodology. The parameters of the disturbed solar wind (number density nsw, velocity Vsw, and temperature Tsw), the disturbed values of the By- and Bz-components of the interplanetary magnetic field, which is the cause of magnetic storms on Earth, as well as the indices of geomagnetic activity (AE, Dst and Kp) are selected as source input to the study. In this paper, geomagnetic storms with Kр ≥ 5 or G1, G2, G3, and G4 geomagnetic storms are considered. In total, there were 153 storms with Kp ≥ 5. The time series of the nsw, Vsw, Tsw maximum values, of the By- and Bz-components, and of the AE, Dst and Kp indices, as well as of the Bz-component and the Dst index minimum values have been analyzed. Results. The main statistical characteristics of the parameters of the solar wind, interplanetary magnetic field, and of the geomagnetic field have been determined for 153 events that took place during Solar Cycle 24. Conclusions. The geomagnetic situation during Solar Cycle 24 was calmer than during Solar Cycle 23.","PeriodicalId":52802,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical characteristics of geomagnetic storm activity during solar cycle 24, 2009–2020\",\"authors\":\"\",\"doi\":\"10.26565/2311-0872-2020-33-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urgency. The atmosphere and geospace are widely used as a radio channel in solving problems of radar, radio navigation, direction finding, radio communication, radio astronomy, and the remote sensing of the Earth from space or the near-earth environment from the surface of the planet. The parameters of the atmospheric-space radio channel are determined by the state of tropospheric and space weather, which is formed mainly by non-stationary processes on the Sun (solar storms) and partly by high-energy processes on the Earth and in the atmosphere. Geospace storms give rise to the strongest disturbances of the atmospheric-space radio channel, and it is important to note that these storms are diverse, so that no two storms are alike. At the same time, storms have both similar and individual features. Currently, there is insufficient knowledge about both of these features, and their study remains an urgent task of space geophysics and space radio physics. In particular, the identification of general patterns is advisable by performing a statistical analysis of a large number of storms. The aim of this work is to statistically analyze the parameters of the solar wind and geomagnetic field during the Solar Cycle 24 activity (2009–2020). Methods and Methodology. The parameters of the disturbed solar wind (number density nsw, velocity Vsw, and temperature Tsw), the disturbed values of the By- and Bz-components of the interplanetary magnetic field, which is the cause of magnetic storms on Earth, as well as the indices of geomagnetic activity (AE, Dst and Kp) are selected as source input to the study. In this paper, geomagnetic storms with Kр ≥ 5 or G1, G2, G3, and G4 geomagnetic storms are considered. In total, there were 153 storms with Kp ≥ 5. The time series of the nsw, Vsw, Tsw maximum values, of the By- and Bz-components, and of the AE, Dst and Kp indices, as well as of the Bz-component and the Dst index minimum values have been analyzed. Results. The main statistical characteristics of the parameters of the solar wind, interplanetary magnetic field, and of the geomagnetic field have been determined for 153 events that took place during Solar Cycle 24. Conclusions. The geomagnetic situation during Solar Cycle 24 was calmer than during Solar Cycle 23.\",\"PeriodicalId\":52802,\"journal\":{\"name\":\"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2311-0872-2020-33-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogouniversitetu imeni VN Karazina Seriia Radiofizika ta elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2311-0872-2020-33-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical characteristics of geomagnetic storm activity during solar cycle 24, 2009–2020
Urgency. The atmosphere and geospace are widely used as a radio channel in solving problems of radar, radio navigation, direction finding, radio communication, radio astronomy, and the remote sensing of the Earth from space or the near-earth environment from the surface of the planet. The parameters of the atmospheric-space radio channel are determined by the state of tropospheric and space weather, which is formed mainly by non-stationary processes on the Sun (solar storms) and partly by high-energy processes on the Earth and in the atmosphere. Geospace storms give rise to the strongest disturbances of the atmospheric-space radio channel, and it is important to note that these storms are diverse, so that no two storms are alike. At the same time, storms have both similar and individual features. Currently, there is insufficient knowledge about both of these features, and their study remains an urgent task of space geophysics and space radio physics. In particular, the identification of general patterns is advisable by performing a statistical analysis of a large number of storms. The aim of this work is to statistically analyze the parameters of the solar wind and geomagnetic field during the Solar Cycle 24 activity (2009–2020). Methods and Methodology. The parameters of the disturbed solar wind (number density nsw, velocity Vsw, and temperature Tsw), the disturbed values of the By- and Bz-components of the interplanetary magnetic field, which is the cause of magnetic storms on Earth, as well as the indices of geomagnetic activity (AE, Dst and Kp) are selected as source input to the study. In this paper, geomagnetic storms with Kр ≥ 5 or G1, G2, G3, and G4 geomagnetic storms are considered. In total, there were 153 storms with Kp ≥ 5. The time series of the nsw, Vsw, Tsw maximum values, of the By- and Bz-components, and of the AE, Dst and Kp indices, as well as of the Bz-component and the Dst index minimum values have been analyzed. Results. The main statistical characteristics of the parameters of the solar wind, interplanetary magnetic field, and of the geomagnetic field have been determined for 153 events that took place during Solar Cycle 24. Conclusions. The geomagnetic situation during Solar Cycle 24 was calmer than during Solar Cycle 23.