有界数据不确定性的竞争最小二乘问题

N. Kalantarova, Mehmet A. Donmez, S. Kozat
{"title":"有界数据不确定性的竞争最小二乘问题","authors":"N. Kalantarova, Mehmet A. Donmez, S. Kozat","doi":"10.1109/ICASSP.2012.6288755","DOIUrl":null,"url":null,"abstract":"We study robust least squares problem with bounded data uncertainties in a competitive algorithm framework. We propose a competitive least squares (LS) approach that minimizes the worst case “regret” which is the difference between the squared data error and the smallest attainable squared data error of an LS estimator. We illustrate that the robust least squares problem can be put in an SDP form for both structured and unstructured data matrices and uncertainties. Through numerical examples we demonstrate the potential merit of the proposed approaches.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Competitive least squares problem with bounded data uncertainties\",\"authors\":\"N. Kalantarova, Mehmet A. Donmez, S. Kozat\",\"doi\":\"10.1109/ICASSP.2012.6288755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study robust least squares problem with bounded data uncertainties in a competitive algorithm framework. We propose a competitive least squares (LS) approach that minimizes the worst case “regret” which is the difference between the squared data error and the smallest attainable squared data error of an LS estimator. We illustrate that the robust least squares problem can be put in an SDP form for both structured and unstructured data matrices and uncertainties. Through numerical examples we demonstrate the potential merit of the proposed approaches.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在竞争算法框架下研究了具有有界数据不确定性的鲁棒最小二乘问题。我们提出了一种竞争最小二乘(LS)方法,该方法最小化了最坏情况下的“遗憾”,即LS估计器的平方数据误差与最小可达到的平方数据误差之间的差异。我们证明了对于结构化和非结构化数据矩阵以及不确定性,鲁棒最小二乘问题都可以化为SDP形式。通过数值算例,我们证明了所提出方法的潜在优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Competitive least squares problem with bounded data uncertainties
We study robust least squares problem with bounded data uncertainties in a competitive algorithm framework. We propose a competitive least squares (LS) approach that minimizes the worst case “regret” which is the difference between the squared data error and the smallest attainable squared data error of an LS estimator. We illustrate that the robust least squares problem can be put in an SDP form for both structured and unstructured data matrices and uncertainties. Through numerical examples we demonstrate the potential merit of the proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信