用于康复监测和信息交互的新兴纳米发电机

Bojing Shi, Zhuo Liu, Ouyang Han, Yubo Fan
{"title":"用于康复监测和信息交互的新兴纳米发电机","authors":"Bojing Shi, Zhuo Liu, Ouyang Han, Yubo Fan","doi":"10.33696/nanotechnol.2.017","DOIUrl":null,"url":null,"abstract":"Soft wearable devices with flexibility and stretchability attract thousands of researchers around the world. These devices can be used in health monitoring, intelligent robotic and rehabilitation training system. Emerging nanogenerators (NGs) have been studied extensively for soft wearable devices due to the advantages of easy fabrication, cost-effective, self-powered and high sensitivity in response to mechanics stimulus. Recently, the scientists have developed a flexible and stretchable nanogenerator for rehabilitation monitoring and information interaction, which is called FSDM-NG and emphasized in this commentary. The piezoelectric and triboelectric effects of the FSDM-NG have been utilized for different functions, showing some interesting and useful results to be acted as a self-powered limb motion sensor and an interface of information interaction. The purpose of the commentary is to discuss the characteristics and perspectives of NGs as self-powered wearable sensors and information interaction devices in biomedical field.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Nanogenerators for Rehabilitation Monitoring and Information Interaction\",\"authors\":\"Bojing Shi, Zhuo Liu, Ouyang Han, Yubo Fan\",\"doi\":\"10.33696/nanotechnol.2.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft wearable devices with flexibility and stretchability attract thousands of researchers around the world. These devices can be used in health monitoring, intelligent robotic and rehabilitation training system. Emerging nanogenerators (NGs) have been studied extensively for soft wearable devices due to the advantages of easy fabrication, cost-effective, self-powered and high sensitivity in response to mechanics stimulus. Recently, the scientists have developed a flexible and stretchable nanogenerator for rehabilitation monitoring and information interaction, which is called FSDM-NG and emphasized in this commentary. The piezoelectric and triboelectric effects of the FSDM-NG have been utilized for different functions, showing some interesting and useful results to be acted as a self-powered limb motion sensor and an interface of information interaction. The purpose of the commentary is to discuss the characteristics and perspectives of NGs as self-powered wearable sensors and information interaction devices in biomedical field.\",\"PeriodicalId\":94095,\"journal\":{\"name\":\"Journal of nanotechnology and nanomaterials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanotechnology and nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/nanotechnol.2.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology and nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/nanotechnol.2.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有柔性和可拉伸性的柔软可穿戴设备吸引了世界各地成千上万的研究人员。这些设备可用于健康监测、智能机器人和康复训练系统。新兴的纳米发电机(NGs)由于其易于制造、成本低廉、自供电和对力学刺激的高灵敏度等优点,在软可穿戴设备中得到了广泛的研究。最近,科学家们开发了一种用于康复监测和信息交互的柔性和可拉伸纳米发电机,称为FSDM-NG,并在这篇评论中强调了这一点。FSDM-NG的压电和摩擦电效应已被用于不同的功能,显示出一些有趣和有用的结果,可以作为自供电肢体运动传感器和信息交互接口。这篇评论的目的是讨论ngg作为自供电可穿戴传感器和信息交互设备在生物医学领域的特点和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging Nanogenerators for Rehabilitation Monitoring and Information Interaction
Soft wearable devices with flexibility and stretchability attract thousands of researchers around the world. These devices can be used in health monitoring, intelligent robotic and rehabilitation training system. Emerging nanogenerators (NGs) have been studied extensively for soft wearable devices due to the advantages of easy fabrication, cost-effective, self-powered and high sensitivity in response to mechanics stimulus. Recently, the scientists have developed a flexible and stretchable nanogenerator for rehabilitation monitoring and information interaction, which is called FSDM-NG and emphasized in this commentary. The piezoelectric and triboelectric effects of the FSDM-NG have been utilized for different functions, showing some interesting and useful results to be acted as a self-powered limb motion sensor and an interface of information interaction. The purpose of the commentary is to discuss the characteristics and perspectives of NGs as self-powered wearable sensors and information interaction devices in biomedical field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信