{"title":"耦合非线性光子晶体波导中全光数字放大的实现","authors":"V. Jandieri, R. Khomeriki, D. Erni, W. Chew","doi":"10.2528/PIER17010704","DOIUrl":null,"url":null,"abstract":"In this conceptual study, all-optical amplification of the light pulses in two weakly coupled nonlinear photonic crystal waveguides (PCWs) is proposed. We consider two adjacent PCWs, which consist of line defects in a 2D square lattice of periodically distributed circular rods made from dielectric material with Kerr-type nonlinearity. Dispersion diagrams of the PCW’s symmetric and antisymmetric modes are analyzed using a recently developed analytical formulation. The operating frequency is properly chosen to be located at the edge of the PCW’s dispersion diagram (i.e., adjacent to the photonic crystals low-energy band edge), where in the linear case no propagation modes are excited. However, in case of a nonlinear medium when the amplitude of the injected signal is above some threshold value, solitons are formed propagating inside the coupled nonlinear PCWs. The near field distributions of the propagating light pulse inside the coupled nonlinear PCWs and the output power of the received signal are numerically studied in a detail. A very good agreement between the analytic soliton solution based on the nonlinear Schrödinger equation and numerical result is obtained. Amplification coefficients are calculated for the various amplitudes of the input signals. The results vividly demonstrate the effectiveness of the weakly coupled nonlinear PCWs as an all-optical digital amplifier.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"64 1","pages":"63-72"},"PeriodicalIF":6.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Realization of All-Optical Digital Amplification in Coupled Nonlinear Photonic Crystal Waveguides\",\"authors\":\"V. Jandieri, R. Khomeriki, D. Erni, W. Chew\",\"doi\":\"10.2528/PIER17010704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this conceptual study, all-optical amplification of the light pulses in two weakly coupled nonlinear photonic crystal waveguides (PCWs) is proposed. We consider two adjacent PCWs, which consist of line defects in a 2D square lattice of periodically distributed circular rods made from dielectric material with Kerr-type nonlinearity. Dispersion diagrams of the PCW’s symmetric and antisymmetric modes are analyzed using a recently developed analytical formulation. The operating frequency is properly chosen to be located at the edge of the PCW’s dispersion diagram (i.e., adjacent to the photonic crystals low-energy band edge), where in the linear case no propagation modes are excited. However, in case of a nonlinear medium when the amplitude of the injected signal is above some threshold value, solitons are formed propagating inside the coupled nonlinear PCWs. The near field distributions of the propagating light pulse inside the coupled nonlinear PCWs and the output power of the received signal are numerically studied in a detail. A very good agreement between the analytic soliton solution based on the nonlinear Schrödinger equation and numerical result is obtained. Amplification coefficients are calculated for the various amplitudes of the input signals. The results vividly demonstrate the effectiveness of the weakly coupled nonlinear PCWs as an all-optical digital amplifier.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"64 1\",\"pages\":\"63-72\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER17010704\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER17010704","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Realization of All-Optical Digital Amplification in Coupled Nonlinear Photonic Crystal Waveguides
In this conceptual study, all-optical amplification of the light pulses in two weakly coupled nonlinear photonic crystal waveguides (PCWs) is proposed. We consider two adjacent PCWs, which consist of line defects in a 2D square lattice of periodically distributed circular rods made from dielectric material with Kerr-type nonlinearity. Dispersion diagrams of the PCW’s symmetric and antisymmetric modes are analyzed using a recently developed analytical formulation. The operating frequency is properly chosen to be located at the edge of the PCW’s dispersion diagram (i.e., adjacent to the photonic crystals low-energy band edge), where in the linear case no propagation modes are excited. However, in case of a nonlinear medium when the amplitude of the injected signal is above some threshold value, solitons are formed propagating inside the coupled nonlinear PCWs. The near field distributions of the propagating light pulse inside the coupled nonlinear PCWs and the output power of the received signal are numerically studied in a detail. A very good agreement between the analytic soliton solution based on the nonlinear Schrödinger equation and numerical result is obtained. Amplification coefficients are calculated for the various amplitudes of the input signals. The results vividly demonstrate the effectiveness of the weakly coupled nonlinear PCWs as an all-optical digital amplifier.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.