D. Kumar, A. Yıldırım, Mohammed K. A. Kaabar, H. Rezazadeh, M. Samei
{"title":"探讨毛细管重力波相互作用中Schrödinger-KdV耦合方程的一些新解","authors":"D. Kumar, A. Yıldırım, Mohammed K. A. Kaabar, H. Rezazadeh, M. Samei","doi":"10.1007/s40096-022-00501-0","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":48563,"journal":{"name":"Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploration of some novel solutions to a coupled Schrödinger–KdV equations in the interactions of capillary-gravity waves\",\"authors\":\"D. Kumar, A. Yıldırım, Mohammed K. A. Kaabar, H. Rezazadeh, M. Samei\",\"doi\":\"10.1007/s40096-022-00501-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":48563,\"journal\":{\"name\":\"Mathematical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40096-022-00501-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40096-022-00501-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Mathematical Sciences is an international journal publishing high quality peer-reviewed original research articles that demonstrate the interaction between various disciplines of theoretical and applied mathematics. Subject areas include numerical analysis, numerical statistics, optimization, operational research, signal analysis, wavelets, image processing, fuzzy sets, spline, stochastic analysis, integral equation, differential equation, partial differential equation and combinations of the above.