{"title":"半无限伊辛铁磁体上各向异性海森堡表面:重整化群处理","authors":"U. Costa, A. Mariz, C. Tsallis","doi":"10.1051/JPHYSLET:019850046018085100","DOIUrl":null,"url":null,"abstract":"We use a Migdal-Kadanoff-like renormalization group approach to study the critical behaviour of a semi-infinite simple cubic Ising ferromagnet whose (1, 0, 0) free surface contains anisotropic (in spin space) Heisenberg ferromagnetic interactions. The phase diagram presents three phases (namely the paramagnetic, the bulk ferromagnetic and the surface ferromagnetic ones) which join on a multicritical point The location of this point is calculated as a function of the anisotropy. The various universality classes of the problem are exhibited.","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"16 1","pages":"851-859"},"PeriodicalIF":0.0000,"publicationDate":"1985-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Anisotropic Heisenberg surface on semi-infinite Ising ferromagnet : renormalization group treatment\",\"authors\":\"U. Costa, A. Mariz, C. Tsallis\",\"doi\":\"10.1051/JPHYSLET:019850046018085100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a Migdal-Kadanoff-like renormalization group approach to study the critical behaviour of a semi-infinite simple cubic Ising ferromagnet whose (1, 0, 0) free surface contains anisotropic (in spin space) Heisenberg ferromagnetic interactions. The phase diagram presents three phases (namely the paramagnetic, the bulk ferromagnetic and the surface ferromagnetic ones) which join on a multicritical point The location of this point is calculated as a function of the anisotropy. The various universality classes of the problem are exhibited.\",\"PeriodicalId\":14822,\"journal\":{\"name\":\"Journal De Physique Lettres\",\"volume\":\"16 1\",\"pages\":\"851-859\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Lettres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYSLET:019850046018085100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046018085100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anisotropic Heisenberg surface on semi-infinite Ising ferromagnet : renormalization group treatment
We use a Migdal-Kadanoff-like renormalization group approach to study the critical behaviour of a semi-infinite simple cubic Ising ferromagnet whose (1, 0, 0) free surface contains anisotropic (in spin space) Heisenberg ferromagnetic interactions. The phase diagram presents three phases (namely the paramagnetic, the bulk ferromagnetic and the surface ferromagnetic ones) which join on a multicritical point The location of this point is calculated as a function of the anisotropy. The various universality classes of the problem are exhibited.