半无限伊辛铁磁体上各向异性海森堡表面:重整化群处理

U. Costa, A. Mariz, C. Tsallis
{"title":"半无限伊辛铁磁体上各向异性海森堡表面:重整化群处理","authors":"U. Costa, A. Mariz, C. Tsallis","doi":"10.1051/JPHYSLET:019850046018085100","DOIUrl":null,"url":null,"abstract":"We use a Migdal-Kadanoff-like renormalization group approach to study the critical behaviour of a semi-infinite simple cubic Ising ferromagnet whose (1, 0, 0) free surface contains anisotropic (in spin space) Heisenberg ferromagnetic interactions. The phase diagram presents three phases (namely the paramagnetic, the bulk ferromagnetic and the surface ferromagnetic ones) which join on a multicritical point The location of this point is calculated as a function of the anisotropy. The various universality classes of the problem are exhibited.","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"16 1","pages":"851-859"},"PeriodicalIF":0.0000,"publicationDate":"1985-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Anisotropic Heisenberg surface on semi-infinite Ising ferromagnet : renormalization group treatment\",\"authors\":\"U. Costa, A. Mariz, C. Tsallis\",\"doi\":\"10.1051/JPHYSLET:019850046018085100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a Migdal-Kadanoff-like renormalization group approach to study the critical behaviour of a semi-infinite simple cubic Ising ferromagnet whose (1, 0, 0) free surface contains anisotropic (in spin space) Heisenberg ferromagnetic interactions. The phase diagram presents three phases (namely the paramagnetic, the bulk ferromagnetic and the surface ferromagnetic ones) which join on a multicritical point The location of this point is calculated as a function of the anisotropy. The various universality classes of the problem are exhibited.\",\"PeriodicalId\":14822,\"journal\":{\"name\":\"Journal De Physique Lettres\",\"volume\":\"16 1\",\"pages\":\"851-859\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Lettres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYSLET:019850046018085100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046018085100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们使用migdal - kadanff类重整化群方法研究了半无限简单立方Ising铁磁体的临界行为,其(1,0,0)自由表面包含各向异性(在自旋空间中)海森堡铁磁相互作用。相图显示了三个相(顺磁相、体铁磁相和表面铁磁相)连接在一个多临界点上,该点的位置计算为各向异性的函数。展示了问题的各种通用性类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic Heisenberg surface on semi-infinite Ising ferromagnet : renormalization group treatment
We use a Migdal-Kadanoff-like renormalization group approach to study the critical behaviour of a semi-infinite simple cubic Ising ferromagnet whose (1, 0, 0) free surface contains anisotropic (in spin space) Heisenberg ferromagnetic interactions. The phase diagram presents three phases (namely the paramagnetic, the bulk ferromagnetic and the surface ferromagnetic ones) which join on a multicritical point The location of this point is calculated as a function of the anisotropy. The various universality classes of the problem are exhibited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信