薄板样条径向基函数最优恢复的初步证明

IF 0.3 Q4 MATHEMATICS, APPLIED
Moran Kim, Chohong Min
{"title":"薄板样条径向基函数最优恢复的初步证明","authors":"Moran Kim, Chohong Min","doi":"10.12941/JKSIAM.2015.19.409","DOIUrl":null,"url":null,"abstract":"In many practical applications, we face the problem of reconstruction of an un- known function sampled at some data points. Among infinitely many possible reconstructions, the thin plate spline interpolation is known to be the least oscillatory one in the Beppo-Levi semi norm, when the data points are sampled in R 2 . The traditional proofs supporting the argu- ment are quite lengthy and complicated, keeping students and researchers off its understanding. In this article, we introduce a simple and short proof for the optimal reconstruction. Our proof is unique and reguires only elementary mathematical background.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"1 1","pages":"409-416"},"PeriodicalIF":0.3000,"publicationDate":"2015-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AN ELEMENTARY PROOF OF THE OPTIMAL RECOVERY OF THE THIN PLATE SPLINE RADIAL BASIS FUNCTION\",\"authors\":\"Moran Kim, Chohong Min\",\"doi\":\"10.12941/JKSIAM.2015.19.409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many practical applications, we face the problem of reconstruction of an un- known function sampled at some data points. Among infinitely many possible reconstructions, the thin plate spline interpolation is known to be the least oscillatory one in the Beppo-Levi semi norm, when the data points are sampled in R 2 . The traditional proofs supporting the argu- ment are quite lengthy and complicated, keeping students and researchers off its understanding. In this article, we introduce a simple and short proof for the optimal reconstruction. Our proof is unique and reguires only elementary mathematical background.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"409-416\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2015.19.409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2015.19.409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

在许多实际应用中,我们面临着在一些数据点上采样的未知函数的重建问题。在无限多种可能的重构中,当数据点在r2中采样时,已知薄板样条插值是Beppo-Levi半范数中振荡最小的重构。支持这一论点的传统证据相当冗长和复杂,使学生和研究人员难以理解。在本文中,我们介绍了最优重构的一个简单而简短的证明。我们的证明是独一无二的,只需要初等的数学背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN ELEMENTARY PROOF OF THE OPTIMAL RECOVERY OF THE THIN PLATE SPLINE RADIAL BASIS FUNCTION
In many practical applications, we face the problem of reconstruction of an un- known function sampled at some data points. Among infinitely many possible reconstructions, the thin plate spline interpolation is known to be the least oscillatory one in the Beppo-Levi semi norm, when the data points are sampled in R 2 . The traditional proofs supporting the argu- ment are quite lengthy and complicated, keeping students and researchers off its understanding. In this article, we introduce a simple and short proof for the optimal reconstruction. Our proof is unique and reguires only elementary mathematical background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信