自动散焦光谱抠图

Hui Zhou, T. Ahonen
{"title":"自动散焦光谱抠图","authors":"Hui Zhou, T. Ahonen","doi":"10.1109/ICIP.2014.7025879","DOIUrl":null,"url":null,"abstract":"Alpha matting for single image is an inherently under-constrained problem and thus normally requires user input. In this paper, an automatic, bottom-up matting algorithm using defocus cue is proposed. Different from most defocus matting algorithms, we first extract matting components by applying unsupervised spectral matting algorithm on single image. The defocus cue is then used for classifying matting components to form a complete foreground matte. This approach gives more robust result because focus estimation is used in component level rather than pixel level.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"135 1","pages":"4328-4332"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic defocus spectral matting\",\"authors\":\"Hui Zhou, T. Ahonen\",\"doi\":\"10.1109/ICIP.2014.7025879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alpha matting for single image is an inherently under-constrained problem and thus normally requires user input. In this paper, an automatic, bottom-up matting algorithm using defocus cue is proposed. Different from most defocus matting algorithms, we first extract matting components by applying unsupervised spectral matting algorithm on single image. The defocus cue is then used for classifying matting components to form a complete foreground matte. This approach gives more robust result because focus estimation is used in component level rather than pixel level.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"135 1\",\"pages\":\"4328-4332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

单个图像的Alpha抠图本质上是一个约束不足的问题,因此通常需要用户输入。本文提出了一种基于离焦线索的自底向上自动抠图算法。与大多数散焦抠图算法不同,我们首先在单幅图像上应用无监督光谱抠图算法提取抠图分量。然后使用散焦线索对消光组件进行分类,以形成完整的前景消光。由于该方法是在分量级而不是像素级进行焦点估计,因此具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic defocus spectral matting
Alpha matting for single image is an inherently under-constrained problem and thus normally requires user input. In this paper, an automatic, bottom-up matting algorithm using defocus cue is proposed. Different from most defocus matting algorithms, we first extract matting components by applying unsupervised spectral matting algorithm on single image. The defocus cue is then used for classifying matting components to form a complete foreground matte. This approach gives more robust result because focus estimation is used in component level rather than pixel level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信