23.6%高效锡铅钙钛矿太阳能电池界面载流子萃取优化

Shuaifeng Hu, Kento Otsuka, R. Murdey, Tomoya Nakamura, Minh Anh Truong, Takumi Yamada, Taketo Handa, K. Matsuda, Kyohei Nakano, A. Sato, K. Marumoto, K. Tajima, Y. Kanemitsu, A. Wakamiya
{"title":"23.6%高效锡铅钙钛矿太阳能电池界面载流子萃取优化","authors":"Shuaifeng Hu, Kento Otsuka, R. Murdey, Tomoya Nakamura, Minh Anh Truong, Takumi Yamada, Taketo Handa, K. Matsuda, Kyohei Nakano, A. Sato, K. Marumoto, K. Tajima, Y. Kanemitsu, A. Wakamiya","doi":"10.21203/RS.3.RS-727823/V1","DOIUrl":null,"url":null,"abstract":"\n Carrier extraction is a key issue which limits the efficiency of perovskite solar cells. In this work, carrier extraction is improved by modifying the perovskite layers with a combination of ethylenediammonium diiodide post-treatment and glycine hydrochloride additive. Ethylenediammonium dications primarily affect the top surface of the perovskite films, while glycinium cations preferentially accumulate at the bottom region. The top and bottom interface modifications improve the crystallinity of the perovskite films and lower the density of electrical traps via surface passivation effects, resulting in long charge carrier lifetimes. The orientated aggregation of the ethylenediammonium and glycinium cations at the charge collection interfaces result in the formation of surface dipoles, which facilitate charge extraction. The performance of the treated solar cell devices also increases. The fill factor rose to 0.82, and the power conversion efficiency reaches 23.6% (23.1% certified). The open circuit voltage reaches 0.91 V, just 0.06 V below the Shockley–Queisser limit. The unencapsulated devices also show improved stability under AM 1.5G, retaining over 80% of the initial efficiency after 200 h continuous operation in inert atmosphere. Our strategy is also successfully applied to centimeter-scale devices, with efficiencies up to 21.0%.","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Optimized Carrier Extraction at Interfaces for 23.6% Efficient Tin–Lead Perovskite Solar Cells\",\"authors\":\"Shuaifeng Hu, Kento Otsuka, R. Murdey, Tomoya Nakamura, Minh Anh Truong, Takumi Yamada, Taketo Handa, K. Matsuda, Kyohei Nakano, A. Sato, K. Marumoto, K. Tajima, Y. Kanemitsu, A. Wakamiya\",\"doi\":\"10.21203/RS.3.RS-727823/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Carrier extraction is a key issue which limits the efficiency of perovskite solar cells. In this work, carrier extraction is improved by modifying the perovskite layers with a combination of ethylenediammonium diiodide post-treatment and glycine hydrochloride additive. Ethylenediammonium dications primarily affect the top surface of the perovskite films, while glycinium cations preferentially accumulate at the bottom region. The top and bottom interface modifications improve the crystallinity of the perovskite films and lower the density of electrical traps via surface passivation effects, resulting in long charge carrier lifetimes. The orientated aggregation of the ethylenediammonium and glycinium cations at the charge collection interfaces result in the formation of surface dipoles, which facilitate charge extraction. The performance of the treated solar cell devices also increases. The fill factor rose to 0.82, and the power conversion efficiency reaches 23.6% (23.1% certified). The open circuit voltage reaches 0.91 V, just 0.06 V below the Shockley–Queisser limit. The unencapsulated devices also show improved stability under AM 1.5G, retaining over 80% of the initial efficiency after 200 h continuous operation in inert atmosphere. Our strategy is also successfully applied to centimeter-scale devices, with efficiencies up to 21.0%.\",\"PeriodicalId\":11674,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-727823/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-727823/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

载流子的提取是制约钙钛矿太阳能电池效率的关键问题。在本研究中,利用二碘化乙二铵后处理和甘氨酸盐酸盐添加剂对钙钛矿层进行改性,改善了载体的提取。乙二铵离子主要影响钙钛矿膜的上表面,而甘氨酸离子优先积聚在底层。顶部和底部界面的修饰提高了钙钛矿薄膜的结晶度,并通过表面钝化效应降低了电陷阱的密度,从而延长了载流子的寿命。在电荷收集界面上,乙二铵和甘氨酸阳离子的定向聚集导致表面偶极子的形成,有利于电荷的提取。处理后的太阳能电池装置的性能也有所提高。填充系数提高到0.82,功率转换效率达到23.6%(认证为23.1%)。开路电压达到0.91 V,仅比Shockley-Queisser极限低0.06 V。未封装的器件在AM 1.5G下也表现出更好的稳定性,在惰性气氛中连续运行200 h后仍保持80%以上的初始效率。我们的策略也成功应用于厘米级设备,效率高达21.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Carrier Extraction at Interfaces for 23.6% Efficient Tin–Lead Perovskite Solar Cells
Carrier extraction is a key issue which limits the efficiency of perovskite solar cells. In this work, carrier extraction is improved by modifying the perovskite layers with a combination of ethylenediammonium diiodide post-treatment and glycine hydrochloride additive. Ethylenediammonium dications primarily affect the top surface of the perovskite films, while glycinium cations preferentially accumulate at the bottom region. The top and bottom interface modifications improve the crystallinity of the perovskite films and lower the density of electrical traps via surface passivation effects, resulting in long charge carrier lifetimes. The orientated aggregation of the ethylenediammonium and glycinium cations at the charge collection interfaces result in the formation of surface dipoles, which facilitate charge extraction. The performance of the treated solar cell devices also increases. The fill factor rose to 0.82, and the power conversion efficiency reaches 23.6% (23.1% certified). The open circuit voltage reaches 0.91 V, just 0.06 V below the Shockley–Queisser limit. The unencapsulated devices also show improved stability under AM 1.5G, retaining over 80% of the initial efficiency after 200 h continuous operation in inert atmosphere. Our strategy is also successfully applied to centimeter-scale devices, with efficiencies up to 21.0%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信