适度和极端波动:回报大小对预测有影响吗?

A. Clements, R. Herrera
{"title":"适度和极端波动:回报大小对预测有影响吗?","authors":"A. Clements, R. Herrera","doi":"10.2139/ssrn.3443259","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel decomposition of realized volatility (RV) into moderate and extreme realized volatility estimates. These estimates behave like long and short term components of volatility, and are very different from either realized semi-variance or the continuous and jump components of volatility. Within the standard linear HAR framework, a forecast comparison exercise using index returns shows that employing the new decomposition leads to forecasts that are often superior to the competing forecasts based on existing realized measures.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moderate and Extreme Volatility: Do the Magnitude of Returns Matter for Forecasting?\",\"authors\":\"A. Clements, R. Herrera\",\"doi\":\"10.2139/ssrn.3443259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel decomposition of realized volatility (RV) into moderate and extreme realized volatility estimates. These estimates behave like long and short term components of volatility, and are very different from either realized semi-variance or the continuous and jump components of volatility. Within the standard linear HAR framework, a forecast comparison exercise using index returns shows that employing the new decomposition leads to forecasts that are often superior to the competing forecasts based on existing realized measures.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3443259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3443259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种将已实现波动率分解为中等和极端已实现波动率估计的新方法。这些估计表现得像波动性的长期和短期成分,与已实现的半方差或波动性的连续和跳跃成分有很大不同。在标准的线性HAR框架内,使用指数回报的预测比较练习表明,采用新的分解导致的预测通常优于基于现有实现措施的竞争预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moderate and Extreme Volatility: Do the Magnitude of Returns Matter for Forecasting?
This paper proposes a novel decomposition of realized volatility (RV) into moderate and extreme realized volatility estimates. These estimates behave like long and short term components of volatility, and are very different from either realized semi-variance or the continuous and jump components of volatility. Within the standard linear HAR framework, a forecast comparison exercise using index returns shows that employing the new decomposition leads to forecasts that are often superior to the competing forecasts based on existing realized measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信