黎曼流形上的测地线流和能量泛函

IF 0.2 Q4 MATHEMATICS
Yang Liu
{"title":"黎曼流形上的测地线流和能量泛函","authors":"Yang Liu","doi":"10.11648/J.PAMJ.20211005.11","DOIUrl":null,"url":null,"abstract":"In this paper, we study the geodesic flow and the energy functional on a Riemannian manifold and show that the geodesics have minimal energy, in other words, are the minimizers of the energy functional, from the new perspective of involution, and that the geodesic flow is a Hamiltonian flow which has a close connection with the canonical symplectic structure on the tangent bundle of a Riemannian manifold.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":"21 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Geodesic Flow and Energy Functional on Riemannian Manifolds\",\"authors\":\"Yang Liu\",\"doi\":\"10.11648/J.PAMJ.20211005.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the geodesic flow and the energy functional on a Riemannian manifold and show that the geodesics have minimal energy, in other words, are the minimizers of the energy functional, from the new perspective of involution, and that the geodesic flow is a Hamiltonian flow which has a close connection with the canonical symplectic structure on the tangent bundle of a Riemannian manifold.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.PAMJ.20211005.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20211005.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从对合的新角度研究了黎曼流形上的测地线流和能量泛函,证明了测地线具有极小能量,即能量泛函的极小值,并证明了测地线流是与黎曼流形切束上的正则辛结构有密切联系的哈密顿流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Geodesic Flow and Energy Functional on Riemannian Manifolds
In this paper, we study the geodesic flow and the energy functional on a Riemannian manifold and show that the geodesics have minimal energy, in other words, are the minimizers of the energy functional, from the new perspective of involution, and that the geodesic flow is a Hamiltonian flow which has a close connection with the canonical symplectic structure on the tangent bundle of a Riemannian manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信