{"title":"笔记本环境下轨迹可视化的现状","authors":"A. Graser","doi":"10.1553/giscience2022_02_s73","DOIUrl":null,"url":null,"abstract":"Gaining insights from trajectory datasets is a challenging task that requires suitable visual data representations. There is a considerable gap between the state-of-the-art cartographic techniques presented in the literature and currently available spatial data science toolboxes. This review paper presents the current state of geospatial visualization tools for trajectory data, focusing on the Python and Jupyter notebooks ecosystem. The shortcomings identified provide pointers for further scientific software development, as well as a reference for data scientists in choosing the best-fitting tool for a specific job.","PeriodicalId":29645,"journal":{"name":"GI_Forum","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The State of Trajectory Visualization in Notebook Environments\",\"authors\":\"A. Graser\",\"doi\":\"10.1553/giscience2022_02_s73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaining insights from trajectory datasets is a challenging task that requires suitable visual data representations. There is a considerable gap between the state-of-the-art cartographic techniques presented in the literature and currently available spatial data science toolboxes. This review paper presents the current state of geospatial visualization tools for trajectory data, focusing on the Python and Jupyter notebooks ecosystem. The shortcomings identified provide pointers for further scientific software development, as well as a reference for data scientists in choosing the best-fitting tool for a specific job.\",\"PeriodicalId\":29645,\"journal\":{\"name\":\"GI_Forum\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GI_Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/giscience2022_02_s73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GI_Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/giscience2022_02_s73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
The State of Trajectory Visualization in Notebook Environments
Gaining insights from trajectory datasets is a challenging task that requires suitable visual data representations. There is a considerable gap between the state-of-the-art cartographic techniques presented in the literature and currently available spatial data science toolboxes. This review paper presents the current state of geospatial visualization tools for trajectory data, focusing on the Python and Jupyter notebooks ecosystem. The shortcomings identified provide pointers for further scientific software development, as well as a reference for data scientists in choosing the best-fitting tool for a specific job.