脱挥发模型和炭燃烧模式模型对大型生物质与煤共烧火焰结构影响的大涡模拟研究

IF 1.5 Q3 ENGINEERING, CHEMICAL
M. Rabaçal, Mário Costa, M. Vascellari, C. Hasse, M. Rieth, A. Kempf
{"title":"脱挥发模型和炭燃烧模式模型对大型生物质与煤共烧火焰结构影响的大涡模拟研究","authors":"M. Rabaçal, Mário Costa, M. Vascellari, C. Hasse, M. Rieth, A. Kempf","doi":"10.1155/2018/7036425","DOIUrl":null,"url":null,"abstract":"This work focuses on the impact of the devolatilization and char combustion mode modelling on the structure of a large-scale, biomass and coal co-fired flame using large eddy simulations. The coal modelling framework previously developed for the simulation of combustion in large-scale facilities is extended for biomass capabilities. An iterative procedure is used to obtain devolatilization kinetics of coal and biomass for the test-case specific fuels and heating conditions. This is achieved by calibrating the model constants of two empirical models: the single first-order model and the distributed activation energy model. The reference data for calibration are devolatilization yields obtained with predictive coal and biomass multistep kinetic mechanisms. The variation of both particle density and diameter during char combustion is governed by the conversion mode, which is modelled using two approaches: the power law using a constant parameter that assumes a constant mode during char combustion and a constant-free model that considers a variable mode during combustion. Three numerical cases are considered: single first-order reaction with constant char combustion mode, distributed activation energy with constant char combustion mode, and single first-order reaction with variable char combustion mode. The numerical predictions from the large eddy simulations are compared with experimental results of a high co-firing rate large-scale laboratory flame of coal and biomass. Furthermore, results from single particle conversion under idealised conditions, isolating the effects of turbulence, are presented to assist the interpretation of the predictions obtained with large eddy simulations. The effects of the devolatilization and conversion mode modelling on the flame lift-off, flame length, and spatial distribution and radial profiles of O2 and CO2 are presented and discussed. Both the devolatilization and conversion mode modelling have a significant effect on the conversion of particles under idealised conditions. The large eddy simulations results show that the devolatilization model has a strong impact on the flame structure, but not on the flame lift-off. On the other hand, for the tested numerical conditions, the char combustion mode model has a marginal impact on the predicted results.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Large Eddy Simulation Study on the Effect of Devolatilization Modelling and Char Combustion Mode Modelling on the Structure of a Large-Scale, Biomass and Coal Co-Fired Flame\",\"authors\":\"M. Rabaçal, Mário Costa, M. Vascellari, C. Hasse, M. Rieth, A. Kempf\",\"doi\":\"10.1155/2018/7036425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the impact of the devolatilization and char combustion mode modelling on the structure of a large-scale, biomass and coal co-fired flame using large eddy simulations. The coal modelling framework previously developed for the simulation of combustion in large-scale facilities is extended for biomass capabilities. An iterative procedure is used to obtain devolatilization kinetics of coal and biomass for the test-case specific fuels and heating conditions. This is achieved by calibrating the model constants of two empirical models: the single first-order model and the distributed activation energy model. The reference data for calibration are devolatilization yields obtained with predictive coal and biomass multistep kinetic mechanisms. The variation of both particle density and diameter during char combustion is governed by the conversion mode, which is modelled using two approaches: the power law using a constant parameter that assumes a constant mode during char combustion and a constant-free model that considers a variable mode during combustion. Three numerical cases are considered: single first-order reaction with constant char combustion mode, distributed activation energy with constant char combustion mode, and single first-order reaction with variable char combustion mode. The numerical predictions from the large eddy simulations are compared with experimental results of a high co-firing rate large-scale laboratory flame of coal and biomass. Furthermore, results from single particle conversion under idealised conditions, isolating the effects of turbulence, are presented to assist the interpretation of the predictions obtained with large eddy simulations. The effects of the devolatilization and conversion mode modelling on the flame lift-off, flame length, and spatial distribution and radial profiles of O2 and CO2 are presented and discussed. Both the devolatilization and conversion mode modelling have a significant effect on the conversion of particles under idealised conditions. The large eddy simulations results show that the devolatilization model has a strong impact on the flame structure, but not on the flame lift-off. On the other hand, for the tested numerical conditions, the char combustion mode model has a marginal impact on the predicted results.\",\"PeriodicalId\":44364,\"journal\":{\"name\":\"Journal of Combustion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/7036425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/7036425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 10

摘要

这项工作的重点是利用大涡模拟的脱挥发和炭燃烧模式对大规模生物质和煤共燃烧火焰结构的影响。以前为模拟大型设施中的燃烧而开发的煤炭建模框架已扩展到生物质能力。一个迭代程序被用来获得煤和生物质的脱挥发动力学的测试用例特定燃料和加热条件。这是通过校准两个经验模型的模型常数来实现的:单一阶模型和分布式活化能模型。校准的参考数据是用预测煤和生物质多步动力学机制得到的脱挥发率。在炭燃烧过程中,颗粒密度和直径的变化都受转换模式的控制,转换模式使用两种方法建模:使用常数参数的幂律,在炭燃烧过程中假设恒定模式,以及考虑燃烧过程中可变模式的无常数模型。考虑了三种数值情况:恒定碳燃烧模式下的单一级反应、恒定碳燃烧模式下的分布活化能反应和变碳燃烧模式下的单一级反应。将大涡模拟的数值预测结果与煤与生物质高共燃速率大型实验室火焰的实验结果进行了比较。此外,在理想条件下单粒子转换的结果,孤立湍流的影响,被提出,以协助解释大涡模拟所获得的预测。讨论了脱挥发和转化模式建模对火焰升力、火焰长度以及O2和CO2的空间分布和径向分布的影响。在理想条件下,脱挥发和转化模式建模对颗粒的转化都有显著的影响。大涡模拟结果表明,脱挥发模型对火焰结构有较强的影响,但对火焰升力没有影响。另一方面,在试验数值条件下,炭燃烧模式模型对预测结果的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Large Eddy Simulation Study on the Effect of Devolatilization Modelling and Char Combustion Mode Modelling on the Structure of a Large-Scale, Biomass and Coal Co-Fired Flame
This work focuses on the impact of the devolatilization and char combustion mode modelling on the structure of a large-scale, biomass and coal co-fired flame using large eddy simulations. The coal modelling framework previously developed for the simulation of combustion in large-scale facilities is extended for biomass capabilities. An iterative procedure is used to obtain devolatilization kinetics of coal and biomass for the test-case specific fuels and heating conditions. This is achieved by calibrating the model constants of two empirical models: the single first-order model and the distributed activation energy model. The reference data for calibration are devolatilization yields obtained with predictive coal and biomass multistep kinetic mechanisms. The variation of both particle density and diameter during char combustion is governed by the conversion mode, which is modelled using two approaches: the power law using a constant parameter that assumes a constant mode during char combustion and a constant-free model that considers a variable mode during combustion. Three numerical cases are considered: single first-order reaction with constant char combustion mode, distributed activation energy with constant char combustion mode, and single first-order reaction with variable char combustion mode. The numerical predictions from the large eddy simulations are compared with experimental results of a high co-firing rate large-scale laboratory flame of coal and biomass. Furthermore, results from single particle conversion under idealised conditions, isolating the effects of turbulence, are presented to assist the interpretation of the predictions obtained with large eddy simulations. The effects of the devolatilization and conversion mode modelling on the flame lift-off, flame length, and spatial distribution and radial profiles of O2 and CO2 are presented and discussed. Both the devolatilization and conversion mode modelling have a significant effect on the conversion of particles under idealised conditions. The large eddy simulations results show that the devolatilization model has a strong impact on the flame structure, but not on the flame lift-off. On the other hand, for the tested numerical conditions, the char combustion mode model has a marginal impact on the predicted results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combustion
Journal of Combustion ENGINEERING, CHEMICAL-
CiteScore
2.00
自引率
28.60%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信