Bozhen Liu, Peiming Liu, Yanze Li, Chia-che Tsai, Dilma Da Silva, Jeff Huang
{"title":"当线程遇到事件时:具有起源的高效和精确的静态竞争检测","authors":"Bozhen Liu, Peiming Liu, Yanze Li, Chia-che Tsai, Dilma Da Silva, Jeff Huang","doi":"10.1145/3453483.3454073","DOIUrl":null,"url":null,"abstract":"Data races are among the worst bugs in software in that they exhibit non-deterministic symptoms and are notoriously difficult to detect. The problem is exacerbated by interactions between threads and events in real-world applications. We present a novel static analysis technique, O2, to detect data races in large complex multithreaded and event-driven software. O2 is powered by “origins”, an abstraction that unifies threads and events by treating them as entry points of code paths attributed with data pointers. Origins in most cases are inferred automatically, but can also be specified by developers. More importantly, origins provide an efficient way to precisely reason about shared memory and pointer aliases. Together with several important design choices for race detection, we have implemented O2 for both C/C++ and Java/Android applications and applied it to a wide range of open-source software. O2 has found new races in every single real-world code base we evaluated with, including Linux kernel, Redis, OVS, Memcached, Hadoop, Tomcat, ZooKeeper and Firefox Android. Moreover, O2 scales to millions of lines of code in a few minutes, on average 70x faster (up to 568x) compared to an existing static analysis tool from our prior work, and reduces false positives by 77%. We also compared O2 with the state-of-the-art static race detection tool, RacerD, showing highly promising results. At the time of writing, O2 has revealed more than 40 unique previously unknown races that have been confirmed or fixed by developers.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"When threads meet events: efficient and precise static race detection with origins\",\"authors\":\"Bozhen Liu, Peiming Liu, Yanze Li, Chia-che Tsai, Dilma Da Silva, Jeff Huang\",\"doi\":\"10.1145/3453483.3454073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data races are among the worst bugs in software in that they exhibit non-deterministic symptoms and are notoriously difficult to detect. The problem is exacerbated by interactions between threads and events in real-world applications. We present a novel static analysis technique, O2, to detect data races in large complex multithreaded and event-driven software. O2 is powered by “origins”, an abstraction that unifies threads and events by treating them as entry points of code paths attributed with data pointers. Origins in most cases are inferred automatically, but can also be specified by developers. More importantly, origins provide an efficient way to precisely reason about shared memory and pointer aliases. Together with several important design choices for race detection, we have implemented O2 for both C/C++ and Java/Android applications and applied it to a wide range of open-source software. O2 has found new races in every single real-world code base we evaluated with, including Linux kernel, Redis, OVS, Memcached, Hadoop, Tomcat, ZooKeeper and Firefox Android. Moreover, O2 scales to millions of lines of code in a few minutes, on average 70x faster (up to 568x) compared to an existing static analysis tool from our prior work, and reduces false positives by 77%. We also compared O2 with the state-of-the-art static race detection tool, RacerD, showing highly promising results. At the time of writing, O2 has revealed more than 40 unique previously unknown races that have been confirmed or fixed by developers.\",\"PeriodicalId\":20557,\"journal\":{\"name\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453483.3454073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When threads meet events: efficient and precise static race detection with origins
Data races are among the worst bugs in software in that they exhibit non-deterministic symptoms and are notoriously difficult to detect. The problem is exacerbated by interactions between threads and events in real-world applications. We present a novel static analysis technique, O2, to detect data races in large complex multithreaded and event-driven software. O2 is powered by “origins”, an abstraction that unifies threads and events by treating them as entry points of code paths attributed with data pointers. Origins in most cases are inferred automatically, but can also be specified by developers. More importantly, origins provide an efficient way to precisely reason about shared memory and pointer aliases. Together with several important design choices for race detection, we have implemented O2 for both C/C++ and Java/Android applications and applied it to a wide range of open-source software. O2 has found new races in every single real-world code base we evaluated with, including Linux kernel, Redis, OVS, Memcached, Hadoop, Tomcat, ZooKeeper and Firefox Android. Moreover, O2 scales to millions of lines of code in a few minutes, on average 70x faster (up to 568x) compared to an existing static analysis tool from our prior work, and reduces false positives by 77%. We also compared O2 with the state-of-the-art static race detection tool, RacerD, showing highly promising results. At the time of writing, O2 has revealed more than 40 unique previously unknown races that have been confirmed or fixed by developers.