总变差最小化的区域分解方法研究进展

IF 0.3 Q4 MATHEMATICS, APPLIED
Chang-Ock Lee, Jongho Park, Jongho Park
{"title":"总变差最小化的区域分解方法研究进展","authors":"Chang-Ock Lee, Jongho Park, Jongho Park","doi":"10.12941/JKSIAM.2020.24.161","DOIUrl":null,"url":null,"abstract":"Total variation minimization is standard in mathematical imaging and there have been numerous researches over the last decades. In order to process large-scale images in real-time, it is essential to design parallel algorithms that utilize distributed memory computers efficiently. The aim of this paper is to illustrate recent advances of domain decomposition methods for total variation minimization as parallel algorithms. Domain decomposition methods are suitable for parallel computation since they solve a large-scale problem by dividing it into smaller problems and treating them in parallel, and they already have been widely used in structural mechanics. Differently from problems arising in structural mechanics, energy functionals of total variation minimization problems are in general nonlinear, nonsmooth, and nonseparable. Hence, designing efficient domain decomposition methods for total variation minimization is a quite challenging issue. We describe various existing approaches on domain decomposition methods for total variation minimization in a unified view. We address how the direction of research on the subject has changed over the past few years, and suggest several interesting topics for further research.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"27 1","pages":"161-197"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"RECENT ADVANCES IN DOMAIN DECOMPOSITION METHODS FOR TOTAL VARIATION MINIMIZATION\",\"authors\":\"Chang-Ock Lee, Jongho Park, Jongho Park\",\"doi\":\"10.12941/JKSIAM.2020.24.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Total variation minimization is standard in mathematical imaging and there have been numerous researches over the last decades. In order to process large-scale images in real-time, it is essential to design parallel algorithms that utilize distributed memory computers efficiently. The aim of this paper is to illustrate recent advances of domain decomposition methods for total variation minimization as parallel algorithms. Domain decomposition methods are suitable for parallel computation since they solve a large-scale problem by dividing it into smaller problems and treating them in parallel, and they already have been widely used in structural mechanics. Differently from problems arising in structural mechanics, energy functionals of total variation minimization problems are in general nonlinear, nonsmooth, and nonseparable. Hence, designing efficient domain decomposition methods for total variation minimization is a quite challenging issue. We describe various existing approaches on domain decomposition methods for total variation minimization in a unified view. We address how the direction of research on the subject has changed over the past few years, and suggest several interesting topics for further research.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"27 1\",\"pages\":\"161-197\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2020.24.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2020.24.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

总变异最小化是数学成像的标准,在过去的几十年里已经有了大量的研究。为了实时处理大规模图像,设计有效利用分布式存储计算机的并行算法至关重要。本文的目的是说明总变差最小化的领域分解方法作为并行算法的最新进展。区域分解方法是将一个大问题分解成多个小问题并进行并行处理的方法,适用于并行计算,在结构力学中得到了广泛的应用。与结构力学问题不同,总变分最小化问题的能量泛函通常是非线性的、非光滑的和不可分的。因此,设计有效的区域分解方法使总变差最小化是一个非常具有挑战性的问题。我们统一地描述了各种现有的最小化总变分的域分解方法。我们讨论了在过去几年中该主题的研究方向是如何变化的,并提出了几个值得进一步研究的有趣主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RECENT ADVANCES IN DOMAIN DECOMPOSITION METHODS FOR TOTAL VARIATION MINIMIZATION
Total variation minimization is standard in mathematical imaging and there have been numerous researches over the last decades. In order to process large-scale images in real-time, it is essential to design parallel algorithms that utilize distributed memory computers efficiently. The aim of this paper is to illustrate recent advances of domain decomposition methods for total variation minimization as parallel algorithms. Domain decomposition methods are suitable for parallel computation since they solve a large-scale problem by dividing it into smaller problems and treating them in parallel, and they already have been widely used in structural mechanics. Differently from problems arising in structural mechanics, energy functionals of total variation minimization problems are in general nonlinear, nonsmooth, and nonseparable. Hence, designing efficient domain decomposition methods for total variation minimization is a quite challenging issue. We describe various existing approaches on domain decomposition methods for total variation minimization in a unified view. We address how the direction of research on the subject has changed over the past few years, and suggest several interesting topics for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信