GIS PD模式识别的SA-SVM增量算法

Dibo Wang, Ju Tang, R. Zhuo, Jun-yi Lin, Jian-rong Wu, Xiao-xing Zhang
{"title":"GIS PD模式识别的SA-SVM增量算法","authors":"Dibo Wang, Ju Tang, R. Zhuo, Jun-yi Lin, Jian-rong Wu, Xiao-xing Zhang","doi":"10.1109/ICHVE.2012.6357131","DOIUrl":null,"url":null,"abstract":"With changes in insulated defects, the environment, and so on, new partial discharge (PD) data are highly different from the original samples. It leads to a decrease in on-line recognition rate. Using ultra-high frequency (UHF) cumulative energy and its corresponding apparent discharge as inputs, a support vector machine (SVM) incremental method based on simulated annealing (SA) is constructed. Examples show that the new method speeds up the data update rate and improves the adaptability of the classifier.","PeriodicalId":6375,"journal":{"name":"2012 International Conference on High Voltage Engineering and Application","volume":"4 1","pages":"388-391"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SA-SVM incremental algorithm for GIS PD pattern recognition\",\"authors\":\"Dibo Wang, Ju Tang, R. Zhuo, Jun-yi Lin, Jian-rong Wu, Xiao-xing Zhang\",\"doi\":\"10.1109/ICHVE.2012.6357131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With changes in insulated defects, the environment, and so on, new partial discharge (PD) data are highly different from the original samples. It leads to a decrease in on-line recognition rate. Using ultra-high frequency (UHF) cumulative energy and its corresponding apparent discharge as inputs, a support vector machine (SVM) incremental method based on simulated annealing (SA) is constructed. Examples show that the new method speeds up the data update rate and improves the adaptability of the classifier.\",\"PeriodicalId\":6375,\"journal\":{\"name\":\"2012 International Conference on High Voltage Engineering and Application\",\"volume\":\"4 1\",\"pages\":\"388-391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on High Voltage Engineering and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHVE.2012.6357131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on High Voltage Engineering and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHVE.2012.6357131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着绝缘缺陷、环境等的变化,新的局部放电(PD)数据与原始样品有很大的不同。导致在线识别率下降。以超高频(UHF)累积能量及其相应的视放电为输入,构造了一种基于模拟退火(SA)的支持向量机(SVM)增量方法。实例表明,该方法加快了数据更新速度,提高了分类器的自适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SA-SVM incremental algorithm for GIS PD pattern recognition
With changes in insulated defects, the environment, and so on, new partial discharge (PD) data are highly different from the original samples. It leads to a decrease in on-line recognition rate. Using ultra-high frequency (UHF) cumulative energy and its corresponding apparent discharge as inputs, a support vector machine (SVM) incremental method based on simulated annealing (SA) is constructed. Examples show that the new method speeds up the data update rate and improves the adaptability of the classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信