马尔可夫状态切换跳跃扩散过程的最优投资组合和消费

IF 0.9
Caibin Zhang, Zhibin Liang, K. Yuen
{"title":"马尔可夫状态切换跳跃扩散过程的最优投资组合和消费","authors":"Caibin Zhang, Zhibin Liang, K. Yuen","doi":"10.1017/S1446181121000122","DOIUrl":null,"url":null,"abstract":"Abstract We consider the optimal portfolio and consumption problem for a jump-diffusion process with regime switching. Under the criterion of maximizing the expected discounted total utility of consumption, two methods, namely, the dynamic programming principle and the stochastic maximum principle, are used to obtain the optimal result for the general objective function, which is the solution to a system of partial differential equations. Furthermore, we investigate the power utility as a specific example and analyse the existence and uniqueness of the optimal solution. Under the constraints of no-short-selling and nonnegative consumption, closed-form expressions for the optimal strategy and the value function are derived. Besides, some comparisons between the optimal results for the jump-diffusion model and the pure diffusion model are carried out. Finally, we discuss our optimal results in some special cases.","PeriodicalId":74944,"journal":{"name":"The ANZIAM journal","volume":"3 1","pages":"308 - 332"},"PeriodicalIF":0.9000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"OPTIMAL PORTFOLIO AND CONSUMPTION FOR A MARKOVIAN REGIME-SWITCHING JUMP-DIFFUSION PROCESS\",\"authors\":\"Caibin Zhang, Zhibin Liang, K. Yuen\",\"doi\":\"10.1017/S1446181121000122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the optimal portfolio and consumption problem for a jump-diffusion process with regime switching. Under the criterion of maximizing the expected discounted total utility of consumption, two methods, namely, the dynamic programming principle and the stochastic maximum principle, are used to obtain the optimal result for the general objective function, which is the solution to a system of partial differential equations. Furthermore, we investigate the power utility as a specific example and analyse the existence and uniqueness of the optimal solution. Under the constraints of no-short-selling and nonnegative consumption, closed-form expressions for the optimal strategy and the value function are derived. Besides, some comparisons between the optimal results for the jump-diffusion model and the pure diffusion model are carried out. Finally, we discuss our optimal results in some special cases.\",\"PeriodicalId\":74944,\"journal\":{\"name\":\"The ANZIAM journal\",\"volume\":\"3 1\",\"pages\":\"308 - 332\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ANZIAM journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1446181121000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ANZIAM journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1446181121000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究一类具有状态切换的跳跃扩散过程的最优投资组合和最优消费问题。在期望消费折现总效用最大化的准则下,利用动态规划原理和随机极大值原理两种方法求出一般目标函数的最优结果,即一类偏微分方程组的解。进一步以电力公司为例,分析了最优解的存在性和唯一性。在不卖空和非负消费约束下,导出了最优策略和价值函数的封闭表达式。此外,还对跳跃扩散模型和纯扩散模型的最优结果进行了比较。最后,讨论了一些特殊情况下的最优结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTIMAL PORTFOLIO AND CONSUMPTION FOR A MARKOVIAN REGIME-SWITCHING JUMP-DIFFUSION PROCESS
Abstract We consider the optimal portfolio and consumption problem for a jump-diffusion process with regime switching. Under the criterion of maximizing the expected discounted total utility of consumption, two methods, namely, the dynamic programming principle and the stochastic maximum principle, are used to obtain the optimal result for the general objective function, which is the solution to a system of partial differential equations. Furthermore, we investigate the power utility as a specific example and analyse the existence and uniqueness of the optimal solution. Under the constraints of no-short-selling and nonnegative consumption, closed-form expressions for the optimal strategy and the value function are derived. Besides, some comparisons between the optimal results for the jump-diffusion model and the pure diffusion model are carried out. Finally, we discuss our optimal results in some special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信