{"title":"通过批归一化相似性使多站点网络适应新的临床站点","authors":"Shira Kasten Serlin, J. Goldberger, H. Greenspan","doi":"10.1109/ISBI52829.2022.9761487","DOIUrl":null,"url":null,"abstract":"This paper tackles the challenging problem of medical site adaptation; i.e., learning a model from multi-site source data such that it can be modified and adapted to a new site using only unlabeled data from the new site. The method is based on Domain Specific Batch Normalization architecture and uses the Batch Normalization statistics of the new site to find the most similar internal site. The similarity measure is computed in an embedded space of the BN parameters. We evaluated our method on the task of MRI prostate segmentation. Public datasets from six different institutions were used, containing distribution shifts. The experimental results show that the proposed approach outperforms other generalization and adaptation methods.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptation of a Multi-Site Network to a New Clinical Site Via Batch-Normalization Similarity\",\"authors\":\"Shira Kasten Serlin, J. Goldberger, H. Greenspan\",\"doi\":\"10.1109/ISBI52829.2022.9761487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the challenging problem of medical site adaptation; i.e., learning a model from multi-site source data such that it can be modified and adapted to a new site using only unlabeled data from the new site. The method is based on Domain Specific Batch Normalization architecture and uses the Batch Normalization statistics of the new site to find the most similar internal site. The similarity measure is computed in an embedded space of the BN parameters. We evaluated our method on the task of MRI prostate segmentation. Public datasets from six different institutions were used, containing distribution shifts. The experimental results show that the proposed approach outperforms other generalization and adaptation methods.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"14 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptation of a Multi-Site Network to a New Clinical Site Via Batch-Normalization Similarity
This paper tackles the challenging problem of medical site adaptation; i.e., learning a model from multi-site source data such that it can be modified and adapted to a new site using only unlabeled data from the new site. The method is based on Domain Specific Batch Normalization architecture and uses the Batch Normalization statistics of the new site to find the most similar internal site. The similarity measure is computed in an embedded space of the BN parameters. We evaluated our method on the task of MRI prostate segmentation. Public datasets from six different institutions were used, containing distribution shifts. The experimental results show that the proposed approach outperforms other generalization and adaptation methods.